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Abstract 
In the present work, a 3D orthotropic model is developed, aiming at precisely predicting the 
hydromechanical behavior of timber structures. Based on test results and on thermodynamical 
considerations, an evolution law is proposed for the hydro-lock strain. This phenomenon is 
assumed to occur in the longitudinal direction, but not in the tangential and radial directions. 
Beside, a 3D incremental formulation is developed to depict the viscoelastic strain at variable 
humidity, what allows overcoming the memory effect. Finally, the coupling of these two parts 
leads to a new 3D incremental model suitable to simulate the time dependent hydromechanical 
behavior of softwood. It should be noted that the time step to be used for numerical simulations 
must be finite, but not necessarily small. This important feature significantly reduces the 
computational effort while maintaining good accuracy. For the sake of illustration, the model is 
finally used to simulate the effect of varying humidity on the evolution of stress and strain states 
in a plain wood beam loaded in axial tension and in bending. 
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1 INTRODUCTION 

The behavior of softwood material is governed by 
complex interactions between mechanical stress and 
moisture content variations, called mechanosorptive 
effect. This effect can produce structural failure, even 
in the case of small load [Hearmon 1964]. Therefore, 
many research works have been performed, aiming at 
explaining or modeling this complex behavior. 

Some authors proposed to describe this phenomenon 
as a hydrolock effect, which is considered a temporary 
locking of the mechanical strain during a period of 
drying [Gril 1988], [Dubois 2005], [Husson 2010]. A 
recent study based on specific mechanosorptive tests 
[Saifouni 2014] confirmed the existence of a hydrolock 
strain resulting from a locking effect in the longitudinal 
direction. No evidence of the existence of a hydrolock 
effect in transverse directions was reported. Besides, 
these authors also developed models to simulate this 
effect, but with a limitation to 1D case, which makes 
them not easily suitable to depict the hydromechanical 
response of a wooden structure in environmental 
conditions.  

In this context, we propose a new model for the 
hydromechanical behavior of softwood, which takes 
into account the coupling between hydrolock and 
orthotropic viscoelastic effects. In a first part, based on 
experimental results, we recall the properties of the 

hydrolock strain as a base for the modeling. Then, 
from thermodynamical considerations, evolution laws 
for the hydrolock strain and the viscoelastic strain are 
proposed in the second part. An incremental numerical 
model will be developed then. Finally, we present and 
discuss exemplary simulation results. 

2 PROPERTIES OF HYDROLOCK STRAIN 

The process of creation and recovery of hydrolock 
strain was evidenced in an experimental program, 
what was especially dedicated to the study of the 
mechanosorptive behavior of silver fir specimens 
(Abies alba Mill.) [Saifouni 2014]. 

In this study, a mechanosorptive tensile test in 
longitudinal direction was carried out on small scale 
specimens under cyclic loading and humidity. The 
stress and the relative humidity were varied stepwise, 
in such a way as to describe a sinus-like diagram 
(Fig. 1). The elementary contributions of the hydric, the 
elastic and the viscous effects to the resulting total 
strain were estimated from a series of preliminary 
tests. By subtracting these elementary contributions 
from the total resulting strain recorded during the test, 
it was finally possible to evidence the existence of a 
hydro-lock strain as a result of the complex interaction 
between the mechanical stress and the humidity 
variations. The resulting evolution of the hydro-lock 
strain is shown on Fig.1.  
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Fig. 1. Hydromechanical loading, total measured strain 
and evidenced hydro-lock strain. 

The main feature can be summarized as follows: 

i) the hydro-lock strain is created and develops 
instantly for each decrease of humidity in the drying 
phase  under constant stress ; its 
evolution consists of a series of successive steps. 

ii) a stress variation  at constant humidity 
 does not cause any change in the hydro-lock 

strain. Moreover, this strain may be considered 
constant  when the relative humidity does not 
vary. In other words, the hydro-lock strain is 
independent of time and stress variations at constant 
relative humidity. 

iii) the hydro-lock strain (when it exists) decreases in 
absolute value, until it disappears when the moisture 
content  returns to its initial value  at the beginning 
of the drying phase under stress. 

These three important features will be considered 
below for the construction of a new hydrolock 
viscoelastic model. 

3 SETTING OF THE ANALYTICAL MODEL 

The model bases on the hypothesis of the total strain 
partition [Saifouni 2014], as follows: 

wveHLet εεεεε &&&&& +++=  (1) 

 is the elastic strain.  is the hydrolock strain.  is 
a free strain which depends on the shrinkage-swelling 
coefficients and the moisture content.  is a pure 
viscoelastic strain which depends on the level and 
duration of loading. This hypothesis can be 
schematized by an analogue model, as follows: 

eε
HLε veε wε

 

Fig. 2: Analogue model. 

Accordingly, each of elementary contributions to the 
total strain is analyzed separately in the following. 
Their sum will finally yield the complete model. 

3.1 Free and elastic strain parts 

The free strain evolution simply writes as follows: 

ww
&& αε =  (2) 

where  is a swelling/shrinkage coefficient that is 
considered constant in this work. 

The elastic strain is given by Hooke’s law with 
depending on moisture content of the Young’s 
modulus. Hence  
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where  is the elastic strain evolution due 
to the varying stress , and  is 
the one due to the varying elasticity modulus caused 
by the moisture content changes . 

3.2 Hydrolock strain part 

The validity of equation (1) and the analogue model 
must be justified in the thermodynamic framework. 

Thermodynamic framework 

The justification bases on the choice of a thermo-
dynamical potential, as a function of state variables. In 
the present case, the state variables necessary to 
describe the reversible instantaneous hydroelastic 
behavior at constant temperature (ignoring the viscous 
effects) are the strain  and the moisture content . 
To describe the hydrolock effect of the strain in the 
drying phase under stress, it is necessary to introduce 
an additional state variable . The thermodynamical 
potential is decomposed in two parts, as follows: 

( ) ( ) ( )HLHLeHL ww εψεψεεψ += ,,,  (4) 

The third state law provides a relationship between the 
additional state variable  and its associated variable 

, as follows 
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In this equation,  is a fictitious stress without specified 
significance. Equation (4) shows the existence a bi-
univocal relationship between  and , which can 
also be written 

( )σε ~1−= gHL  (5) 

Expressions for the hydrolock strain need be specified, 
which will be done in the following sections for drying 
and wetting phases, respectively. 

Hydrolock strain evolution in the drying phase 

In equation (1), the sum  can be written 

HL
w
eeHLe εεεεε σ

&&&&& ++=+  (6) 

As mentioned above as feature (i) in section 2, the test 
results showed that the hydrolock strain results from a 
blocking effect of strain in the drying phase under 
stress. If there isn’t stress variation , it comes 
from equation (6) 
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Hence, 
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Where  present the evolution of the hydrolock 
strain in the drying phase. Equation (8) shows that the 
blocking phenomenon of the strain during a drying 
phase is due to the evolution of the hydrolock strain 
which compensates the part  of the elastic strain 
variation due to the Young’s modulus evolution. This 
equation also shows that the hydrolock strain does not 
change  at constant humidity , 
regardless of the mechanical stress . This property is 
in agreement with experimental observations (feature 
(ii) in section 2). 

Hydrolock strain evolution in the wetting phase 

The tests showed that the hydrolock strain (if it exists) 
decreases in absolute value during the wetting phase 
until it disappears when the moisture content  returns 
to its initial value  at the beginning of the drying 
phase under stress (feature (iii) in section 2). This 
indication is not enough to express the hydrolock strain 
in the humidification phase. Another possibility is to 
assume that its evolution is similar to the equation (8). 
But we see that this equation doesn’t allow the 
hydrolock strain to recover if the stress is zero or 
insufficient. To overcome this problem, we replace the 
mechanical stress  in equation (8) by a fictitious 
stress  to determine. This leads to 
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where  is the evolution of the hydrolock strain in 
the wetting phase. To satisfy the remark above, the 
hydrolock strain must disappear when . Hence, 
the actual value of the fictitious stress   is obtained by 
integrating equation (9) on the interval  with the 
boundary condition , which yields 
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It can be noticed that this expression is the function 
 introduced in equation (4). 

Finally, all of equations (8), (9) and (10) established 
the analytical formulation of the hydrolock strain 
evolution, in accordance with experimental evidences 
and with the principles of thermodynamics. It is worth 
noticing that the value of the fictitious stress  only 
depends on the accumulated amount of hydrolock 
strain at the time considered. Its value is always 
defined . The introduction of this fictitious 
stress allows solving the recovery of the hydrolock 
strain in a moistening phase, regardless of the loading 
level. Furthermore, we note that it was not necessary 
to specify the physical meaning of the fictitious stress 
to establish the equations above. 

3.3 Viscoelastic strain part 

The viscoelastic part in the analogue model is 
schematized by a Kelvin’s cell parallel to a Maxwell’s 
branch (Fig.2). This elementary model depicts a pure 
viscoelastic behavior (no instantaneous elasticity). 
Hence, the hydrolock effect doesn’t influence on time 
dependent strain part (feature (ii) in section 2). 
Combined with a spring in series, this pure viscoelastic 
model is equivalent to Maxwell’s generalized model 
containing two elementary Maxwell’s branches plus an 
isolated spring in parallel. Thus, the formulation of 

viscoelastic and elastic part will be merged in the 
Boltzmann’s equation in the case of relaxation. 

The relaxation function is required to solve the 
viscoelastic problem. In the following, the relaxation 
function is approximated by a Dirichlet’s series, in 
which the coefficients depend linearly on moisture 
content as follows 
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where  are fixed constants;  is the moisture 
content at time . Linear laws are assumed for the 
parameters  in order to depict the 
dependency of the relaxation function towards the 
moisture content . The set of constants  and  
can be determined from tests using the least square 
method.  

In the general orthotropic case, the viscoelastic matrix 
of relaxation  has 9 independent functions, 
which depend on the moisture content level , the 
loading time  and the actual time . This number 
reduces to six for the case of constant Poisson’s 
coefficients. From a close inspection of test results in 
[Carriou 1987], it was concluded that the number of 
functions can be reduced to two only, the one for the 
three shear terms, the second for the other terms. 
Hence, we can write 

( )[ ] ( )[ ] ( )[ ]wAwttρwttR ,,,, 00 =  (12) 

where,  is the elasticity rigidity matrix, which 
depends on the actual moisture content at time . 

 is a 
diagonal matrix containing two relaxation functions 
represented by Dirichlet’s series such as equation (11),  
where . 

Hence, 
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where , and  

[ ] ( )[ ]10tt
eexp

−−
= µβ

µ  (14) 

These equations mean that the three shear terms of 
the viscoelastic matrix evolve proportionally to the 
second dimensionless function, and the nine other 
terms evolve proportionally to the first one. Let us note 
that  and  above represent a vector and a matrix, 
respectively. 

4 INCREMENTAL NUMERICAL MODEL 

Using an incremental form is a good way to solve a 
time dependent problem. An incremental form for a 
behavior law is a relation between strain and stress 
increments on a finite time interval. Thanks to the step-
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by-step calculation, it is not necessary to memorize the 
total stress and strain histories. 

By taking into account the hypothesis of strain partition 
above (see section 3), the incremental total strain is 
equal to the sum of its elementary parts, as follows: 

{ } { } { } { } { }wveHLet εεεεε ∆+∆+∆+∆=∆  (15) 

The incremental forms of the four parts of equation 
(15) are established in the following. 
4.1 Incremental form of the free strain 

According to equation (2), the incremental free strain 
simply depends on incremental moisture content and 
the swelling/shrinkage coefficients matrix, which is 
assumed constant in the paper: 

{ } [ ] wαw ∆=∆ε  (16) 

4.2 Incremental form of the hydrolock strain 

This point is treated separately for the two phases of 
drying and moistening with the following notations: 

, , , 
and . It should be noted that 
the hydrolock effect exists only in the longitudinal 
direction. Therefore, the Young’s modulus here is the 
one in this direction. For the sake of simplicity, we note 
here that  are a matrix 6x6 and a column 
vector 6x1 the longitudinal direction term is equal to 1 
and the other terms are equal to zero.  

Drying phase 

As mentioned in section 3.1, the varying hydrolock 
strain in the drying phase compensates the elastic 
strain variation at constant stress (equation (8)). By 
taking advantage of this property, the increment  
can be obtained by integrating equation (8) over a 
finite time interval  with a hypothesis of linear 
modulus variation on this time interval. It leads 
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 are the stress and its increment in the 
longitudinal direction. 

Wetting phase 

In this case, the hydrolock strain increment is obtained 
by integrating of  in equation (9). Replacing 
equation (10) in (9) and then resolving a first order 
differential equation gives  
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Finally, the combination of equations (17) and (18) 
yields 
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4.3 Incremental form of the elastic-viscoelastic 
strain 

The sum of incremental elastic and viscoelastic strains 
will be derived from Boltzmann’s equation formulated 
in relaxation case: 
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t
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where  is the sum of elastic and pure 
viscoelastic strain (elastic-viscoelastic strain). Given 
equations (12-14), equation (22) can be written 
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The incremental stress is defined as:  

{ } ( ){ } ( ){ }ttt σσσ −∆+=∆  (24) 

By substituting equation (23) in equation (24) and after 
arrangement, we have 

{ } [ ]{ } { }eveeveeve η ξσε +∆=∆  (25) 

where, 
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4.4 Global incremental form of the behavior law 

Finally, the incremental form of the behavior law of the 
complete model is obtained by summing of equation 
(16), (19) and (25) 
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 are given by equations (26) and (29), 
respectively.  are a matrix and a vector 
which take the values given in equation (20) for a 
drying phase, and in equation (21) for a wetting phase.  

The form of the equation (32) is similar to the case of 
the thermoelastic behavior. Taking advantage of this 
property, the numerical implementation of the model is 
performed by setting an equivalent linear thermoelastic 
problem, where  is a fictitious compliance and  is 
an equivalent thermal loading. It should be noted that 
equation (32) results from accurate integrals, the only 
approximation regarding the evolution of  which is 
considered linear on the time interval . This 
means that the time step  used for the numerical 
calculation is finite, but not necessarily small. This 
important property allows reducing the computational 
effort significantly, while maintaining a good accuracy, 
which can be very beneficial in case of the application 
this model for simulating complex problems. 

5 NUMERICAL SIMULATIONS 

The model is used to analyze the influence of moisture 
content variations in a softwood beam subjected to two 
cases of constant loading: pure traction and pure 
bending.  
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Fig. 3: Moisture content variation used for the 
calculations. 

 

The main features are as follows: 

- Beam dimensions (L-H-B) : 60x3x1 cm3  
- Shrinkage / swelling coefficients (L-R-T): 

0.0002, 0.0028, 0.0038 
- Young’s modulus (L-R-T): 

    EL(w) = (1. - (0.015*(W-12.)))*EL12 
    ER(w) = (1. - (0.030*(W-12.)))*ER12 
    ET(w) = (1. - (0.030*(W-12.)))*ET12 

- Parameters of the 1st relaxation function: 
  a1.0 = 1-(a1.1 + a1.2 + a1.3);  
  b1.0 = 0-(b1.1 + b1.2 + b1.3) ; 
  a1.1 = 1.1316e-2  ;  b1.1 = 4.8422e-4;  
  a1.2 = 8.3830e-3;    b1.2 = 3.6338e-4;  
  a1.3 = 5.2516e-2;   b1.3 = 4.8896e-4;  

- Parameters of the 2nd relaxation function: 
  a2.0 = 1-(a2.1 + a2.2 + a2.3);  
  b2.0 = 0-(b2.1 + b2.2 + b2.3) ; 
  a2.1 = a1.1;  b2.1 = b1.1;   
  a2.2 = a1.2;  b2.2 = b1.2;  
  a2.3 = a1.3;  b2.3 = b1.3;   

The model was implemented on the FEM software 
Cast3m for the numerical simulations. The moisture 
content variation considered in the calculations for the 
both examples is presented in figure 3. 
5.1 Example 1: beam in pure tension 

In this example, the beam is loaded in constant tension 
in the longitudinal direction. The simulated strain is 
presented in figure 4. 
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Fig. 4: Effect of varying moisture content on the 
longitudinal strain in constant tensile loading. 

This figure shows that the longitudinal strain (blue line) 
evolves between the red line (solution for steady ‘dry’ 
stage) and the green line (solution for steady ‘wet’ 
stage) in the case when the hydrolock effect is not 
taken into account. When the hydrolock effect is taken 
into account, the same behavior is observed during the 
initial moistening phase. On the contrary, the behavior 
is significantly modified by the hydrolock effect during 
the second drying-moistening cycle. 
5.2 Example 2: beam in bending and shear 

In a second example, the beam is loaded by constant 
transverse loads in four points. The cross-sections are 
therefore subjected to pure normal stresses in the 
middle part of the beam, and by a combination of 
bending normal stresses and shear stresses in the 
other parts. As a result of the numerical simulation, the 
vertical deflection at mid-span is presented in figure 5. 
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Fig. 5: Effect of varying moisture content on the vertical 
deflection in constant bending. 

As in the previous example, the worked out solutions 
are compared, with and without hydrolock effect. Here 
again, the longitudinal deflection (blue line) evolves 
between the red line (solution for steady ‘dry’ stage) 
and the green line (solution for steady ‘wet’ stage) in 
the case when the hydrolock effect is not taken into 
account. As in the previous case, the hydrolock effect 
has no effect during the initial moistening phase, while 
it significantly affects the flexural behavior of the beam 
during the drying-moistening cycle. 

These two computational examples clearly show that 
the hydrolock effect significantly affects the mechanical 
response of wooden members when subjected to 
variable loading and humidity. 

6 CONCLUSION 

In this paper, the hydrolock effect, previously reported 
by several authors, was taken into account in a new 
incremental 3D model of hydromechanical behavior of 
softwood. The main features of this model are as 
follows: 

- An evolution law is proposed for the hydrolock strain, 
in accordance with experimental evidences and the 
principles of thermodynamics. 

- The coupling of the hydric, elastic, viscoelastic and 
hydrolock strain parts is performed, based on the 
hypothesis of total strain partition.   

- The analytical model is turned into an incremental 
form based on exact integrals. Consequently, the 
time step is finite, but not necessarily small.  

- Taking advantage of the shape of the incremental 
form, the model can be easily implemented in a FEM 
software (Cast3m in the present case). The 
calculation is then worked out as a fictitious 
equivalent thermoelastic problem. A good accuracy 
is obtained for low calculation effort. 

- The influence of the hydrolock strain was analyzed 
through two exemplary calculations. The results 
clearly show that the hydromechanical behavior of 
wood members is significantly affected by the 
hydrolock effect, which cannot therefore be omitted 
in the simulation of wooden structures subjected to 
variable loading and environmental conditions. 
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