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ABSTRACT This work presents an original uncertainty propagation method, called sparse-PCE, 
developed to assess the reliability of a cracked plate with spatially varying uncertain mechanical 
properties. It combines regression techniques to compute the unknown coefficients of the PCE-
based metamodel and an efficient truncation scheme which uses prior available second order 
statistical moment information to identify the most important components of the polynomial 
chaos basis on the model responses of interest. In this way, the PCE coefficients corresponding to 
the components with weak effects are discarded, and the computational efforts devoted to 
solving the regression problem is significantly reduced. An economy index is introduced in the 
form of a ratio between the respective cardinalities of the sparse and the full chaos polynomial 
basis, which allows us to objectively assess the computational cost saving obtained by the 
proposed truncation scheme based on second moment information. 

Keywords random field, uncertainties propagation, moments analysis, sensitivity analysis, high 
probabilistic dimension, polynomial chaos, fatigue crack growth 

I. INTRODUCTION 

Fatigue crack growth is a random process (Ghonem and Dore, 1987), mainly due to the 
uncertainties observed on the mechanical properties of the materials, on the applied loading as 
well as the parameters defining the geometry of the structure. These sources of uncertainties may 
have a harmful effect on the integrity of cracked structures and should be taken into account to 
ensure safe designs. To this end, uncertainties propagation methods wich have been developed 
over the past forty years (Stefanou, 2009), seems to be the best alternative. Among them we find 
the well-established metamodeling method based on Polynomial Chaos Expansion (PCE), 
introduced to deal with engineering problems in the early 1990’s thanks to the work of (Ghanem 
and Spanos, 1991). The key idea is to build an accurate mathematical approximation of the model 
response of interest (e.g. fatigue lifetime) based on a limited set of evaluations of the primary 
implicit mechanical model. Such an approximation is referred to as a response surface, surrogate 
model or metamodel. Once the PCE-based metamodel is obtained, different kinds of uncertainty 
propagation analysis, such as reliability analysis, can be carried out by simply performing the 
well-known Monte-Carlo Simulations (MCS). Unfortunately, the PCE-based metamodeling 
method still suffer from inefficiency when dealing with problems having high probabilistic 
dimensionality defined as the number of the uncertain parameters. 
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II. Proposed approach 

A. Construction of PCE-based metamodels 

Let us consider a computational model  describing the behavior of an engineering system, 

whose input parameters  are uncertain quantities represented by an -

dimensional random variable  with a prescribed probability density 
function , and  the model response of interest taken for the sake of simplicity as a 
scalar.  Let also assume that the random variable  with a probability density function , 
representing the variability of the model response  induced by the randomness of the input 
parameters, has a finite variance, and that the components of the -dimensional random variable 

 are statistically independent. The PCE-based metamodel of  thus 
reads (Xiu and Karniadakis, 2002): 

 
(1) 

where  denotes the number of terms in the PCE,  a set of 

multi-indices also called N-tuples of integers (i.e., ),  a set of 
multivariate orthonormal polynomials with respect to , whose total degree 

 and  a set of real valued deterministic coefficients to 
be determined.  

The size of the PCE-based metamodel given by equation (1), that is the number of terms  
retained in the summation, can be determined by following one of the truncation schemes 
available in the PCE literature (Blatman, 2009). The most used one consists in retaining the terms 

corresponding to multivariate polynomials  whose total degrees 

 do not exceed a prescribed degree , chosen to ensure 
a better accuracy of the metamodel. Based on this rule, the number of terms  in the truncated 
PCE is given by: 

 

      (2) 

Equation (2) clearly shows that the number of terms in the PCE grows exponentially with , 
which could induce an unaffordable computational cost in the determination of the unknown 
coefficients when dealing with uncertainty propagation problems with a high probabilistic 
dimensionality and especially when the corresponding physical model is itself computationally 
time-demanding. 

In engineering problems, the components of the -dimensional random variable 

 may have different distributions. Thus, the use of isoprobabilistic 
transformations . Then, the PCE-based metamodel represented by equation (1) can be 
naturally rewritten in the standard random space as follows: 

 
(3) 
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B. Computation of the PCE coefficients by regression 
Regression methods have been used first by (Isukapalli, 1999) and later by (Berveiller, 2005), to 
compute the unknown coefficients of the PCE. Unlike projection methods, where the PCE 
coefficients are computed one by one by evaluating multidimensional integrals, regression 
methods estimate all the coefficients at the same time by solving a minimization problem in the 
least-squares sense, which could considerably reduce the computation effort. The regression 
technique consists in finding the vector of coefficients  that minimizes the mean square error 

, that is:    

      (4) 

In practice, the minimization problem defined by equation (4) is discretized on the basis of a set of 

sample points , also called experimental design, to 
replace the expectation operator  by its empirical estimate. Thus, the minimization problem 
reads: 

 
  (5) 

where  and  are respectively the responses of the PCE-based metamodel and 

the primary mechanical model at the point . 

The choice of a suitable experimental design  is of great 
importance, especially its size , to obtain a well-conditioned regression problem and 
consequently accurate estimates of the PCE coefficients. Indeed, if  is just slightly greater than 
the number  of unknown coefficients to be computed, this may lead to an ill-conditioned 
information matrix  and consequently to an intractable regression problem. On the other hand, 
that is, if  is very high, this may induce an unaffordable computational cost in case the 
mechanical model itself is computational time-demanding, since the corresponding number of 
evaluations of the mechanical model will be high. In the literature, the value of  is commonly 
chosen in the range [ , ] to ensure a better balance between the computational cost and the 
accuracy of the estimates. In this paper the parameter is obtained by a smart truncation scheme 
combining low-order interactions terms and prior available information on second order moment. 

C. Truncation scheme based on low-order interactions 
For problems with high dimensionality , a major part of the PCE coefficients represents 
interactions between uncertain parameters, even for moderate truncation degree . Fortunately, 
for engineering problems experience has shown that high order interactions have often 
insignificant effect, which means that the corresponding PCE coefficients are close to 0. Thus, the 
size of the polynomial chaos basis can be reduced by retaining only the terms representing main 
and low-order interactions effects. 
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Let  a complete polynomial chaos basis for a 
given truncation degree . 

 an incomplete, 
called also sparse, polynomial chaos basis for a given truncation degree  and interaction order 

, i.e., only -variate polynomials whose respective total degrees do not exceed a given 
degree  are retained. If the allowed maximum interaction order  is not high, the cardinality of 
the sparse polynomial chaos basis  will be much lower than that of the complete polynomial 
chaos basis . 
The efficiency of the truncation scheme based on sparse polynomial basis can be assessed by the 
economy  defined by the following ratio: 

 
     (6) 

where  and  are the cardinalities of the complete  and sparse  
polynomial chaos bases respectively. 

The maximum interaction order  can be chosen either by following a step-by-step scheme where 
the value of  is increased gradually to achieve a target level of accuracy on the estimates of the 
PCE coefficients, or by performing a preliminary screening analysis (Morris, 1991) which allows, 
based statistical analysis of a set of local gradients , to split the uncertain parameters into three 
categories, those with weak main effect, those with linear and additive effects and those with 
nonlinear or interaction effect. Note that screening analysis are not computational time-
demanding, thus the loss of efficiency on the whole computational process is very limited. 

D. Truncation scheme based on second moment information 
If a prior information about the estimate of the second order statistical moments is already 
available, the latter could be a useful tool to identify the most significant terms on the quantities 
of interest, when a step-by-step algorithm is used to build the polynomial chaos basis. Indeed, at 

each iteration  of this algorithm, the polynomial chaos basis - denoted here by  (i.e.,  

in  refers to the target variance of the quantity of interest) - is enriched by a new 

candidate polynomial . If the related PCE term induces a significant change on the estimate of 

the variance , thus getting closer to the target variance , the candidate  is retained. 

Otherwise, i.e. the relative error  is smaller than , the 

candidate  is discarded from the polynomial chaos basis and another candidate is tested in 
the next iteration until a given level of accuracy  is achieved for the whole iterative procedure. 
Note that the values of  used in the criterion of enrichment of the polynomial chaos basis and  

used in the stopping condition of the step-by-step algorithm, are set respectively to  and 

, which allow us, on the one hand, to avoid ill-conditioned information matrix, thus an 
intractable regression problem, and, on the other hand, to ensure a good accuracy on the 
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estimates of the quantities of interest. Of course, other values can be chosen depending on the 
complexity of the problem of interest and the accuracy to be achieved. 

III. Application to fatigue crack growth 

The purpose of this section is to study the efficiency and accuracy of the method developed 
previously based on a mechanical problem of fatigue crack growth from the work of (Long and al, 

2016). We consider a rectangular plate of height  and width  

visualized in figure 1. It is subjected to tensile load  on its bottom and top edges and 

has an open inclined crack with dimensions . Due to the orientation of the 
initial crack with respect to the applied load, this later naturally tends to propagate in a mixed 
fracture mode, instead of a simple opening fracture mode. Thus, a FEM is developed in the 
software (cast3m, 2021) to compute the fracture driving forces, namely the opening fracture mode 

SIF , the in-plane shear fracture mode SIF  and the bifurcation angle .  

 
Figure 1 Inclined edge-cracked plate: geometry and applied loads (left), finite element mesh (right) 

The Young’s modulus  of the constitutive material of the cracked plate is considered as 
an uncertain parameter whose variability varies along both the horizontal and the vertical 

directions denoted by  and , respectively, and gathered in the vector . It is modeled 

by a two-dimensional lognormal random field, with mean value  and 

standard deviation , which can be defined simply as the exponential of a 

normal random field  with mean  and 

standard deviation : 

       (7) 

where  is a parameter to underline the randomness of  and  is a standard 
normal random field of zero mean and unit standard deviation, governed by the following 
exponential autocorrelation function: 
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      (8) 

The standard normal random field  is discretized using the Karhunen-Loève (KL) method 
(Ghanem and Spanos, 1991).  

 
            (9) 

where  are independent standard normal variables,  and are 
respectively eigenvalues and eigenfunctions obtained by solving the following Fredholm integral 

equation corresponding to the autocorrelation function : 

 
     (10) 

Fortunately, for our problem where the two-dimensional spatial domain 

 has a rectangular geometry and the random field  follows an 
exponential autocorrelation function, the Fredholm integral equation can be solved analytically 

and a closed from solutions of the eigenvalues  and the eigenfunctions  can be obtained.  

In the following, a 24th order truncated KL expansion is used to model the spatial variability of 
the Young’s modulus of the constitutive material of the cracked plate following a lognormal 

random field. This means that only the first 24 largest eigenvalues , already sorted in ascending 

order, and the corresponding eigenfunctions  are retained in equation (10). These KL terms 
account for 90% of the variability of the Young’s modulus random field. Thus, the uncertainty 
propagation problem is recast as a function of 24 independent standard normal variables 

. Hence, for a given realization of these random variables, a realization 

 of the random field representing the Young’s modulus of the cracked plate is obtained 

from equation (12). Figures 2 shows a sample of 10 realizations of . 

 
Figure 2 Inclined edge-cracked plate: example of 10 realizations of the Young’s modulus field  with mean 

, standard deviation , horizontal correlation length  and vertical 
correlation length     
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As a first step, a statistical moments and distribution analysis is performed to assess the effect of 
the spatial randomness of the Young’s modulus on the variability of the fracture driving forces. 
The statistical moments of each model response are computed by the full-PCE and sparse-PCE 
approaches. The results obtained for the first two first statistical moments, i.e., the mean and the 

standard deviation, with a PCE of degree , are listed in Table 1 and compared to the 
estimates given by efficient cubature (Chahine, 2023) and 105 crude MCS. As can be seen, the 
results given are in complete agreement. The discrepancy with respect to the reference estimates 
given by 105 MCS is insignificant for all the mechanical responses of interest. It appears that the 
uncertainty on the Young’s modulus, i.e., 10% deviation from its mean value, has a moderate 
effect on the variability of the crack driving forces, since the coefficients of variation 

corresponding to the opening fracture mode SIF , the in-plane shear fracture mode SIF , the 

bifurcation angle  and the effective SIF , are equal to 2.75%, 3.97%, 1.55% and 2.93%, 
respectively. The truncation of the polynomial chaos basis based on second moment information 
significantly reduces the computational effort devoted to solving the least-square regression 
problem used in the sparce-PCE approach to estimate the PCE coefficients. Indeed, only 25 of the 

325 components of the full polynomial chaos basis  have significant contributions on the 
model responses. The corresponding economy index 

 is about 92%, which shows high 

sparsity in the truncated polynomial chaos basis . 
Table  1  Inclined edge-cracked plate: statistical moments of the crack driving forces , ,  and    

 Statistical moments Full-PCE Sparse-PCE Crude 
cubature MCS 

 
 2.8253 2.8253 2.8253 2.8255 
 0.0779 0.0781 0.0781 0.0778 

 
 1.2061 1.2061 1.2061 1.2061 
 0.0460 0.0460 0.0460 0.0479 

 
 36.776 36.776 36.776 36.774 
 0.5570 0.5570 0.5570 0.5713 

 
 6.8846 6.8846 6.8846 6.8849 
 0.1992 0.1992 0.1992 0.2022 

 Number of FEM runs 651 651 651 105 

 
Next, a sensitivity analysis is conducted to assess the contribution of the uncertain parameters 

, resulting from the representation of the random field  by a 24th 

order KL expansion, on the variability of the effective SIF . It is important to remind that this 

effective crack driving force, which is derived from the opening fracture mode SIF , the in-

plane shear fracture mode SIF  and the bifurcation angle , can be considered from a physical 

point of view as an opening fracture mode SIF in the direction along the bifurcation angle . This 
parameter is of a great importance when dealing with mixed-mode fracture problems since it is 

used in the computation of the fatigue crack growth life instead of  and . Moreover, when a 
reliability analysis is to be performed with respect to a serviceability criterion function of the 

fracture toughness of the constitutive material, the effective SIF  should also be used. 
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Figure 3 Inclined edge-cracked plate: comparison of the estimates of the first-order Sobol indices 

Due to the high probabilistic dimension of the problem, the evaluation of Sobol indices by MCS 
impractical. Therefore, the following sensitivity analysis relies only on the full-PCE and sparse-
PCE approaches. Figure 3 compares the estimates of the first-order Sobol indices obtained by 
post-processing the PCE coefficients of the metamodels given by the full-PCE and sparse-PCE 
approaches. As can be seen, the first-order sensitivity indices given by both the full-PCE and 
sparse-PCE approaches are practically identical. This fact can be considered as an indicator of 
convergence for the obtained estimates, and they can therefore represent the reference solution. A 
very fast decay of the main effect of the uncertain parameters is observed. Moreover, the 
uncertain parameter , corresponding to 2nd eigenmode of the KL expansion, is by far the 
most significant effect among all the uncertain parameters, whereas  and  have 

almost no effect on the variability of the effective SIF . In figure 6 are depicted the total Sobol 
indices. The estimates provided by the full-PCE and sparse-PCE approach are quite similar. We 
observe that the order of importance of the uncertain parameters is the same as for the first-order 

indices. The sum of the total indices  is approximately equal to 1, which means that the 
interactions between the uncertain parameters have weak effects on the model response of 
interest. Indeed, if we compare the total indices with the respective first-order ones, it appears 
that the differences are negligible, again demonstrating the insignificance of the contributions of 
the interaction effects. As pointed out in Figure 4, a very fast decay of the importance of the 
uncertain parameters is observed, with the 10 first uncertain parameters 

 explaining roughly 90% of the total variance of the 

effective SIF . This demonstrates a moderate effective probabilistic dimensionality of the 
mechanical response of interest despite the large nominal probabilistic dimension, 24, 
corresponding to the number of eigenmodes required by the KL expansion to accurately represent 
the spatially varying uncertainty in the Young’s modulus of the constitutive material of the 
cracked plate. Although we do not have a true reference solution for the Sobol sensitivity indices, 
the obtained estimates are in good agreement with the results of the local sensitivity analysis 
conducted by (Long and al, 2016), since it has been shown that the uncertain parameters  
and , corresponding to the 2nd and 4th eigenmodes of the KL expansion, respectively, are 
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the most important on the variability of the SIFs of  and . Indeed, the local sensitivity indices 
obtained by the central difference method with respect to the uncertain parameters  and 

, are respectively  and  for the opening 
fracture mode SIF , and  and  for the in-plane 
shear fracture mode SIF .          

 
Figure 4 Inclined edge-cracked plate: comparison of the estimates of the total Sobol indices  

It is important to notice that the sensitivity analysis conducted here did not require any additional 
runs of the FEM, since the Sobol sensitivity indices are derived from the coefficients of the 
metamodels already built in the statistical moments and distribution analysis conducted earlier. 

IV. Conclusion 

We demonstrate the efficiency of the sparse-PCE approaches for conducting different types of 
uncertainty propagation analysis through a computationally demanding implicit mechanical 
model. The proposed approach reduces the computational effort by at least a factor of two, and 
possibly a factor of three if a reliability analysis is carried out later. It is worth noting that the 
computational cost required by the sparse-PCE approach is due to the derivation of second 
moment information needed to build the sparse chaos polynomial basis, rather than the 
estimation of the PCE coefficients. If prior second moment information are already available, the 
computational cost gain should be more noticeable.  

It is important to recall here that the idea behind the implementation of the sparse-PCE approach 
is to avoid the additional computational efforts observed when cubature formulae are directly 
used on the mechanical model, and when one wishes to change the type of uncertainty 
propagation analysis. For instance, a statistical moments analysis can be carried out, first, to 
provide a target estimate of the variance of the model response, and then the sparse-PCE 
approach is used to construct a metamodel that can be used to perform either a sensitivity or a 
reliability analysis. The accuracy of the sparse-PCE approach can be improved when the stopping 
criteria of the stepwise algorithm is established based on higher-order statistical moments such as 
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skewness and kurtosis, instead of variance, provided that the mechanical model evaluations 
already available are sufficient to obtain a well-conditioned regression problem. 
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