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ABSTRACT Civil engineering structures are essential to the infrastructure and directly impact 
people's lives and safety. Notably, many structures are in worrisome working conditions, with 
damage deterioration and occasionally collapse. Combining deep learning with structural health 
monitoring can provide unprecedented tools for structural damage detection and identification. 
This paper explores the use of acceleration features to predict the damage state of a structure 
using time-series acceleration data collected from the Phase I IASC-ASCE Structural Health 
Monitoring (SHM) benchmark model, where the primary identified damage is the removal of 
diagonal braces and beam connections. In this study, to overcome the limitations of using neural 
networks hampered by the small amount of data collected in shaker tests, three methods were 
used to encode time-series acceleration data as images, i.e., two-dimensional numerical matrix 
(2D Matrix), Short-Time Fourier Transform (STFT), and Wavelet Transform (WT). The encoded 
images were then used as input to the Convolutional Neural Networks (CNN) model. Two 
training/test scenarios are used to show the efficiency of the proposed method of structural 
damage recognition. The results show that the WT combined with the CNN is the best approach 
regarding accuracy and efficiency. 

Keywords Convolutional Neural Networks (CNN), Structural Health Monitoring (SHM), Short-Time 
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I. INTRODUCTION 

Structural damage detection and Structural Health Monitoring (SHM) of infrastructure have 
always been an issue that cannot be ignored because they are closely related to our lives. Many 
monitoring and detection methods have been developed to provide practical early warning of 
structural damage or abnormalities. Considerable effort has been invested in vibration-based 
methods, which use the vibration response of the monitored structure to assess its condition and 
identify structural damage. Meanwhile, Machine Learning (ML) and especially Deep Learning (DL) 
algorithms have become more feasible with the development of emerging computing power and 
sensing technologies in the past decade. They are widely used for vibration-based structural 
damage detection with excellent performance and often with stringent accuracy.  

Convolutional Neural Networks (CNN) have contributed much to damage detection research in 
computer vision. One of the research directions is the analysis of surface images of structures 
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directly, as in Sony et al. (2021), Cha et al. (2018), Li et al. (2018), and Wang et al. (2018). However, 
some non-visible structural damage may also seriously affect the daily operation of the structure as 
well as its remaining service life. Moreover, the images required in the literature on vision-based 
methods for damage identification are often available at specific angles and distances, which makes 
the collection of structural surface images difficult. To further monitor structural damage that is not 
visible to the naked eye and break through the limitations of visual-based damage, researchers have 
turned their attention to data collected by sensors placed on structures, as in Chun et al. (2015), 
Abdeljaber et al. (2017), and Khodabandehlou et al. (2019). In such methods, the data are generally 
stored as time histories, such as acceleration data. In addition to directly processing acceleration 
data, many researchers preprocess sensor data by dynamic recognition techniques to extract 
damage features for subsequent analysis, as in Mantawy et al. (2022), Azimi et al (2020), and Chong 
et al. (2014). 

However, these data conversion methods cannot achieve high accuracy and few computations 
simultaneously when facing large volumes of data. To overcome the drawbacks of methods 
utilizing time-series data in training machine learning models, especially the small data size, the 
paper utilizes various techniques to encode time-series data into images to feed the input layer of 
CNN models, which are very effective tools in computer vision.  

METHODOLOGY 

In this study, our approach is validated on the IASC-ASCE benchmark problem. Next, we describe 
our methodology, which consists of introduction of the benchmark structure, the framework for 
handling the structural damage detection problem, the technique for encoding time series data into 
images, and the CNN-based SHM. 

A.  IASC-ASCE benchmark 
The IASC-ASCE benchmark problem was introduced by Johnson et al. (2004). Figure 1 shows the 
geometry of this benchmark structure. It is a four-story, two-bay by two-bay (grade 300W) steel-
frame scale model structure with a footprint of 2.5 m × 2.5 m and a frame height of 3.6 m.  

 

FIGURE 1. Numerical model of the ASCE SHM Benchmark structure 
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The sections are specifically designed for this scale model: the section type of columns is B100 × 9; 
the type of floor beams is S75 × 11; the support system consists of two 12.7 mm diameter threaded 
steel rods placed diagonally. The damage introduced in the benchmark was obtained by removing 
diagonal bracing at specific locations or loosening bolts at several connection locations. In this work, 
we have used the acceleration signal of 16 nodes of the structure, marked with green points. These 
measurement points are located at the middle of each side of the structure, two in the 𝑥 and two in 
the 𝑦 directions per floor. 

B.  Damage detection procedure 
This section summarizes a structural damage detection procedure. The proposed pipeline can 
automatically learn fault characteristics and identify the structure's health from the raw vibration 
signals. Figure 2 shows the overall procedure of the proposed structural damage detection pipeline.  

 

FIGURE 2. General pipeline of structural damage detection  

Vibration signals with different damage modes are collected at fixed measurement points on 
different finite element models of the IASC-ASCE reference structure. After that, the raw vibration 
signals are converted into images as input to the CNN. The different techniques used in this paper 
for converting time series acceleration data into images and the CNN used are further described in 
the following sections. The main objective of this paper is to compare the different techniques for 
converting time series acceleration data into images when combined with CNN for structural 
damage detection. 

C.  Encoding time-series into images 
The type and amount of recorded data play an important role in structural SHM. In most cases, the 
data are recorded in temporal order, i.e., before the damage occurs (no damage state), during 
different degrees of damage, and after the damage occurs. However, structural damage features 
are not easily recognized by CNN in the one-dimensional time-domain signal. One feasible 
consideration is to slice the one-dimensional data and convert it into a two-dimensional numerical 
matrix. Another approach is to convert the original data from the time domain to the frequency 
domain and then use it as the input image for CNN.  As shown in Figure 3, the original vibration 
signal (Acceleration data over time) is truncated by a sliding window by defining the “Frame” 
length as 128 ∗ 128. This operation allows the generation of a set of sub-time series, then we 
preprocess frames as feature maps by transforming to two-dimensional numerical matrix (2D 
Matrix). 
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FIGURE 3. Schematic diagram of processing data into two-dimensional numerical matrices 

We also apply Short-Time Fourier Transform (STFT) and Wavelet Transform (WT) to these 
generated sub-samples. Analyzing signals in the time domain is a common and effective way of 
modern signal processing. Fourier transform is a powerful tool, and it can reflect the overall spectral 
characteristics of the signal well. However, the Fourier transform can only obtain information about 
the frequency components of the signal to be processed, but not time information of each frequency 
component, which results in two signals with very different time domains may have the same 
spectrum. For non-smooth signals such as structural fault vibration signals, the signal frequency 
changes with time, and the instantaneous frequency and amplitude information at each moment 
are also important, which will increase the success rate of damage identification. By selecting the 
wavelet basis function 𝜓!,#(𝑡) and adjusting the scaling factor 𝑎 and translation factor 𝑏, wavelet 
transform with different time-frequency widths can be obtained, which can be matched with the 
original signal at any time to complete the time-frequency localized two-dimensional analysis of 
the signal, as shown in Figure 4.  

 

FIGURE 4. Numerical Basic flow of Wavelet Transform 
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D. Proposed CNN-Based SHM 
CNNs are feedforward artificial neural networks inspired by the visual cortex of animals. CNNs 
have been widely used in object detection in images, videos, and the classification of images (Li 
2021). As shown in Figure 5, each CNN consists of five kinds of layers: the input layer, the 
convolution layer, the pooling layer, the fully connected layer, and the output layer. The input layer 
is a passive layer that accepts the input image and passes the input to convolutional layers. The 
convolutional layers apply different filters to the input image to extract characteristic features. 
These filters are not fixed and are trained by a backpropagation algorithm. The subsampling 
(pooling) layers reduce the dimension of the convolutional layer output following each 
convolutional layer. The fully connected layers are similar to the hidden layers of a multilayer 
perceptron and together with the output layer, produce the output vector of the CNN.  

 

FIGURE 5.  General CNN structure 

The process of a convolutional neural network is to transform the original matrix 𝐻$  through 
multiple levels of data become 𝐻% , and map it to a new mathematical model of feature 
representation 𝑌%. In this study, the acceleration data obtained from the different damage patterns 
of the IASC-ASCE benchmark structure are encoded as input “images”. The training data fed into 
the CNN corresponding to 9 damage patterns. For this purpose, a CNN with four convolutional 
layers (kernel size = 3), four max pooling layers (kernel size = 2), one fully connected layer (number 
of neurons = 9), and a SoftMax layer as the output layer is adopted as show in Figure 6. We adopt 
Negative Log-Likelihood Loss (NLLLoss) as our loss function, Stochastic Gradient Descent (SGD) 
as our optimization way. We use a learning rate scheduler to adapt the learning rate during the 
training process with an initial value of 0.1, it will be reduced by a factor of 0.1 every 10 epochs. In 
addition, to prevent the model from overfitting the training data, we apply an early stopping 
strategy: stop training when the model's performance on the training set changes within 0.001 for 
ten consecutive times instead of continuing training until the training loss is minimized. 

 

FIGURE 6. The proposed CNN structure 
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III. DISCUSSION & RESULTS 

A MATLAB-based finite element analysis code is developed by the IASC-ASCE SHM Task Group 
to generate the simulated structural response data (Johnson 2004). In this study, we use nine 
different damage patterns (including the undamaged pattern) of the IASC-ASCE benchmark 
structure proposed in Abdeljaber et al. (2018) as the training and testing dataset for the proposed 
CNN. In order to overcome the limitations of using neural networks hampered by the small amount 
of data collected in shaker tests, three methods were used to encode time-series acceleration data 
as images, i.e., 2D Matrix, STFT, and WT. The sampling frequency of raw data is 1000Hz. The time-
length of SFTF is 128 ∗ 128/1000 = 16.384s, the frequency-length of STFT is 50Hz (discard useless 
information in high frequency). Therefore, for one channel of data (400s), we can get 40, 000/(128 ∗ 
128)/2 ≈48 spectrograms; for each damage pattern 𝑖, we have 16 channels, so we can get 16 ∗ 48 = 
768 spectrograms; for all damage patterns, we can get 9 ∗ 16 ∗ 48 = 6912 spectrograms. We use 
Daubechies 5 (bd5) wavelet with its own scaling and wavelet function. The encoded images were 
then used as input to the CNN model. The damage prediction results of the CNN using three 
different methods to encode the acceleration data into images are shown in Table 1. “Length of 
Samples” is the size of the vibration signal in seconds. “Model” represents the technique used to 
convert the time series into images. “Accuracy” measures the proportion of correct predictions out 
of the total number of predictions made. We will further explain the accuracy in the form of the 
confusion matrix, which shows the number of correct and incorrect predictions made by the 
classifier, broken down by each class. “Training time” means the time taken to run the code. We 
conduct two sets of experiments with data lengths of 40s and 400s, and each experiment calculates 
the prediction accuracy and training time for different models (2D Matrix, STFT, WT). When the 
duration of the acceleration data to be processed increases from the 40s to 400s, the prediction 
accuracy increases from 68% to 75% using the 2D Matrix model, and the training time increases 
from 20.34s to 3min53s; the prediction accuracy increases from 73% to 92% using the STFT model, 
and the training time increases from 3.82s to 39.11s; the prediction accuracy using the WT model 
increases from 89% to 98%, the training time increases from 3.30s to 35.03s. The results show that 
the WT combined with the CNN is optimal in accuracy and efficiency. 

TABLE 1. Comparison of damage prediction results for benchmark structure 

Length of Samples Model Accuracy Training time 
 

40s 
2D Matrix 68% 20.34s 

STFT 73% 3.82s 
WT 89% 3.30s 

 
400s 

2D Matrix 75% 3min53s 
STFT 92% 39.11s 
WT 98% 35.03s 

To better describe the performance of STFT and WT combined with the CNN on structural damage 
prediction, we use their corresponding confusion matrices for further analysis. It is a visualization 
of the relationship between actual and predicted values in a classification problem. The confusion 
matrix of all training dataset of CNN predicted damage pattern result (data length: 400s, data 
preprocessing: STFT) is shown in Figure 7(a). For ease of expression, we abbreviate the damage 
pattern as DP. We can find that the prediction accuracy of DP 0 (i.e., no damage to the structure) is 
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98%, DP 1 is 95%, DP 2 is 93%, and DP 3 is 96%, with a small amount of mutual confusion occurring 
between their four DPs. The prediction accuracy of DPs 4 and 5 is 100%. DP 6 has a prediction 
accuracy of 85%, and DP 7 has a prediction accuracy of 69%, much lower than the other impairment 
modes. DPs 6 and 7 are relatively easy to confuse for the CNN, with the number of each damage 
pattern being 768, with 226 cases of DP 6 being mistaken for 7, and 114 cases of DP 7 being mistaken 
for 6. The prediction accuracy of DP 8 is 97%. In summary, the final training time is 39.11s, and the 
overall accuracy is 92%. The confusion matrix of all training dataset of CNN predicted fault mode 
result (data length: 400s, data preprocessing: WT) is shown in Figure 7(b). We can find that the 
prediction accuracy of DPs 0, 1, 3, 4, 5, and 8 is 100%. The prediction accuracy of DP 6 is 95%, and 
the prediction accuracy of DP 7 improves from 69% to 91% when comparing STFT and WT to data 
processing. In summary, the final training time is 35.03s, and the overall accuracy is 98%. 

 
(a)                                                              (b) 

FIGURE 7.  Confusion matrix of the trained CNN prediction failure mode results for 400s length of 
samples with different preprocess models, (a): STFT, (b): WT. 

IV. CONCLUSIONS 

This paper compares the effectiveness of three methods to encode time-series acceleration data into 
images when combined with CNN for structural damage identification. When the duration of the 
acceleration data to be processed increases from 40s to 400s, the prediction accuracy using the WT 
method increases from 89% to 98%, the training time increases from 3.30s to 35.03s. The results 
show that the WT combined with the CNN method is optimal in accuracy and efficiency. Therefore, 
when collecting data is expensive, pre-processing data with WT should be preferred. In addition, 
the CNN architecture used in this paper is simple and less likely to lead to overfitting. Moreover, 
the method used in this paper encodes the time series data as images, i.e., it takes into account that 
the loading period may also be one of the causes of the damage and does not ignore the time effect 
of the time series, which provides the possibility to apply the proposed method to fatigue damage 
of structures. 
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