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ABSTRACT  

The fragility curve plays an important role in estimating the structural vulnerability under an 
earthquake disaster. The zone of the most interest is the fragility curve where failure rarely 
occurs. Due to the lognormal hypothesis, the classical approach is limited by a considerable 
quantity of epistemic uncertainty. A second approach, the nonparametric one overcomes this 
problem. However, it requires Monte Carlo Simulations to estimate the probability of 
exceedance of the limit state, which can be computationally intensive, to estimate the interest 
zone of the fragility curve. To overcome this drawback, this work aims to reduce the number of 
nonlinear response evaluations of the pushover analysis, to estimate the fragility curve by using 
surrogate modeling updated by adding new samples that best represent the system’s response, 
also known as Active Learning Approach. This paper proposes a methodology for calculating 
failure probabilities of the seismic fragility curve with a considerable reduction of the 
computational cost. 
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I. INTRODUCTION 

Undoubtedly, earthquakes are among the natural phenomena that mostly affect structures, where 
severe economic and human losses can be caused, especially in large cities [1]. To assure the safety 
of the occupants, it is very important to understand the behavior of structures under earthquake 
effects. The fragility curve is a measure of the probability of a structure reaching a certain level of 
damage for a given seismic intensity.  The classical fragility curve approach is limited by its high 
epistemic uncertainty, due to its dependency on the log-normal assumption, especially when the 
amount of data is limited [2]. A nonparametric approach based on Monte Carlo simulations can be 
employed, but the large number of required simulations and complexity of nonlinear evaluations 
make it impractical. A new methodology is proposed to overcome these drawbacks, based on a 
surrogate model and active learning approach. Today, the combination of Monte Carlo simulations 
and surrogate modeling with active learning approaches are the most powerful methods to perform 
the reliability analysis of complex structures [3]. 

The use of surrogate modeling and an active learning approach to estimate the seismic fragility 
curve represents an original method that can be substantial progress in earthquake engineering. 
This approach has the potential to improve the assessment of a structure's vulnerability to 
earthquake damage by reducing the computational cost and improving the representation of the 



JFMS 2023  AJCE, vol. 41 (3) 

210 
 

 

structural response. Engineers could benefit significantly from this development because it would 
enable them to better understand the risks posed by earthquakes and develop more effective 
strategies for risk mitigation. Moreover, this study's proposed approach has broader applications 
in other areas of engineering where an accurate representation of nonlinear response is critical but 
computational cost is a concern. 

II. FRAGILITY CURVE  

A fragility curve is a useful tool for evaluating the vulnerability of a system to external hazards 
such as earthquakes, and it plays a critical role in engineering, insurance, and risk assessment. It 
represents the relationship between the hazard intensity and the resulting damage to a system. 
Generally, shows that as the intensity increases, the probability of damage or failure also increases. 

There are two main types of fragility curves: parametric and nonparametric. Parametric fragility 
curves assume a specific functional form for the relationship between hazard intensity and 
probability of damage or failure, typically described by a known mathematical function. While they 
are easy to interpret and provide a simple representation between hazard and probability of 
damage, they may not be appropriate for systems with complex nonlinear relationships or limited 
data. 

Nonparametric fragility curves, on the other hand, are based on data-driven approaches and do 
not assume a specific functional shape for the relationship between hazard intensity and probability 
of damage or failure. They can capture complex and nonlinear relationships and can handle 
heterogeneous data. However, constructing nonparametric fragility curves may be more 
computationally intensive and require a larger amount of data to accurately capture the 
relationship. 

Both types of fragility curves have their advantages and limitations, and choosing which type 
to use depends on the specific characteristics of the system being evaluated. In general, a structural 
fragility curve is a powerful tool for estimating the potential damage caused by earthquakes, 
allowing engineers, policymakers, and risk assessors to better understand the risk posed by external 
hazards and develop effective strategies to mitigate them, as well as design timely maintenance and 
repair plans to avoid loss of structural capacity in the event of stronger earthquakes. 

III. STRUCTURAL ANALYSIS  

Nonlinear static analysis 
In seismic engineering assessment, for economic and convenience reasons, structures must be 
designed considering plastic deformations. For this reason, a nonlinear analysis is necessary, 
although in the literature the result of the dynamic analysis is shown as the reference response, it 
also turns out to be an analysis with high computational cost. For this reason, this study bases its 
structural response on a static nonlinear analysis that shows good agreement with the dynamic 
response in structures where the first mode of vibration is predominant. This method allows for 
efficient capture of the plastic response of the structure considering the plastic hinges. 



JFMS 2023  AJCE, vol. 41 (3) 

211 
 

 

For this study, a two-story structure was used with 4.7 m on the first floor and 3.7 m on the 
second floor, with 9.1 m between columns, type I steel beam structure is evaluated. Considering a 
bilinear material model with Young's modulus of 200 GPa and yield strength of 250 MPa and 
hardening’s coefficient of 1% taking as design parameter the relative displacement at the reference 
node, located at the center of mass of the upper level, and the total height of the structure. 

The finite element model is evaluated by using ANSYS software, with BEAM188 type 
elements, respecting the strong-column weak-beam design. Both the dead and live loads are 
considered for the modal analysis and the fundamental period determination of the structure.  

The fundamental period is used to determine the design spectral acceleration according to the 
European standard Eurocode 8. With it, in addition to the seismic mass (ratio of the fixed and 
variable load according to EC8) and the normalized modal displacement, the equivalent lateral 
force is calculated to perform the nonlinear static analysis. This high-step size-dependent analysis 
requires the application of Newton's and Arc-Length's method of response search to ensure 
convergence and reliable results. 

Degradation model 
Corrosion is one of the most observed degradation phenomena in the literature for steel structures. 
In steel is defined as the deterioration of the material due to the environment over time. If structure 
deterioration is measured as mass loss, then the amount of mass per unit of time that a structure 
loses due to the environment is known as the corrosion rate. The mass loss usually occurs at the 
surface of the structure and at a uniform rate, called uniform corrosion, where structural members 
gradually lose thickness at a uniform rate, corrosion rate can be estimated as the following power 
function [4]: 

 
𝐶 = 𝐴𝑡! (1) 

 

Here we have: C = average depth of corrosion (µ𝑚); t = time in years; A = corrosion rate at first 
year represents the initial rate of the corrosion; and B = represents the long-term corrosion. Table 1 
shows the average values, according to different types of environments for carbon steel and 
weathering steel. 

TABLE 1 Average values for corrosion parameters A and B for carbon and weathering steel [5] 

Environment 
Carbon steel Weathering steel 

A B A B 

Rural 34.0 0.65 33.3 0.50 

Urban 80.2 0.59 50.7 0.57 

Marine 70.6 0.79 40.2 0.56 

 

Corrosion is a complex phenomenon that varies widely and depends on the environment. It 
occurs when the surface of a structure is exposed to the elements and results in the formation of 
oxide, which reduces the thickness of the structural member. The thickness reduction is an estimate 
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based on the assumption of average uniform corrosion, rather than an actual measurement of the 
structural member. Despite this limitation, the approximation is commonly used in the literature to 
study the effects of degradation on structures and civil constructions [6-7]. 

Soil-structure iteration 
Winkler's simplified model is commonly used to analyze soil-structure interaction. The model 
represents the interaction by using a beam supported on a series of independent but closely spaced 
springs. The behavior of these springs can be modeled as linear, elastic-plastic, or multi-linear 
hysteresis. 

Linear springs are the simplest model and remain linear regardless of the load. Elastic-plastic 
springs, on the other hand, relative strength required to produce a unitary deformation change after 
the yield point. Multi-linear hysteresis models improve the representation of soil-structure 
interaction after the elastic limit is reached [8]. For this paper, perfect elastic-plastic behavior is 
assumed to model the springs of the Winkler model. This assumption simplifies the analysis while 
still providing accurate results. 

 

FIGURE 1. Soil-Structure Interaction Winkler Spring Model  
 

Malekizadeh et al. [9] suggested that a constant stiffness in all vertical springs can be assumed 
if the existence of hinges in the columns is considered because these consider the participation of 
rotation in the footing. Gazetas et al.  [8] proposes expressions for the stiffness value of the vertical 
and horizontal springs of the Winkler model. These expressions are used in the framework of this 
work to represent the soil-structure iteration. 

 

Vertical stiffness: 

 

𝐾" =
𝐺𝐿

(1  − ν)
[ 0.73  +  1.54 (𝐵/𝐿)#.%&] (2) 
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Horizontal stiffness: 

 

𝐾'   =
𝐺𝐿

(2  −  ν)
[ 2  +  2.5(𝐵/𝐿)#.(&] (3) 

 

Where G is the shear modulus, L is the length of the footing, B is the width, and ν is the 
Poisson's ratio of the foundation material. According to the literature, the depreciation of the soil-
structure interaction can lead to an underestimation of the total displacement of the structure in the 
seismic analysis. 

 

TABLE 2 Average values for soil-structure interaction Winkler model 
Parameter Value 

G0 50 MPa 
L 10.2 
B 0.3 

 

IV. RELIABILITY ANALYSIS 

Active Learning  
Active learning is a machine learning tool that focuses on the learning process by actively selecting 
samples to be used for training the model. The goal of active learning is carefully selecting the 
samples so that the machine learning algorithm can learn as much as possible with a minimum 
amount of data. Active learning is especially useful in situations where the data process is time-
consuming [10]. 

Surrogate Model 
A surrogate model is a simplified or approximate model that is used to represent the behavior of a 
more complex system. The purpose of a surrogate model is to provide a faster and more efficient 
way of predicting a system response, while still capturing the important characteristics of the 
system's behavior. There are several types of surrogate models, including polynomial models, 
response surface models, neural networks, and Kriging models.  

The choice of surrogate model depends on the specific characteristics of the system being 
modeled, including the type of input-output relationship, the presence of nonlinearities or 
discontinuities, and the number and quality of available data.  

Surrogate models are often used in combination with optimization and uncertainty analysis 
methods, such as design optimization, sensitivity analysis, and probabilistic analysis. The surrogate 
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model provides a fast and efficient way of evaluating the objective function or the system's 
response, while the optimization and uncertainty analysis methods provide a way of finding the 
optimal inputs and quantifying the uncertainty in the system's outputs. 

Uncertainties Parameters  
For the scope of this study, uncertainty parameters associated with geometry and material are 
considered. Young's modulus, yield strength, and live loads are considered uncertainty parameters. 
Soil shear modulus and corrosion degradation curve constants are also considered uncertainty 
parameters.  The table summarizes the uncertain parameters, their mean values, and their 
respective distributions. 

 

TABLE 3 Random variables with their probability distribution 
Parameter Mean COV (%) Distribution 

Young’s modulus (E) 200GPa 10 Lognormal 
Yield strength (Fy) 250MPa 10 Lognormal 

Hardening Coeff (b) 1% 10 Normal 
Live load (Q) 25 ton 10 Normal 

First-year corrosion (A) 70.6 µm 66 Lognormal 
Long-term corrosion (B) 0.79 2 Lognormal 
Soil-Shear modulus (G0) 50 MPa 10 Lognormal 

 

The effect of 20 years of corrosion is evaluated, assuming the structure is located in a marine 
environment. In Type D soil according to the Eurocode classification and the seismic intensity is 
imposed in terms of peak ground acceleration. 

V. RESULTS AND DISCUSSIONS  

The capacity curve describes the maximum load that a structure can withstand. Therefore, 
changes in this curve represent a change in the total capacity of a structure to resist an external 
hazard, such as an earthquake. Figure 2 illustrates the reduction of the structural capacity when 
soil-structure interaction is considered. It is also possible to observe that with a lower force, it is 
possible to reach a given limit state. Neglecting the influence of soil on the maximum displacement 
given a ground motion intensity may lead to a possible overestimation of the actual capacity. 
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FIGURE 2. Base fix vs Soil-Structure Interaction model capacity curve  

 
Like the previous case, figure 3 displays variations in the pushover curve, when a degradation 

model is applied due to corrosion that increases exponentially over the years according to the 
power degradation model. 

 

 

FIGURE 3. Base fix vs SSI with uniform corrosion model capacity curve  

 
To test the effectiveness of Active Learning based Monte Carlo simulations, a fragility study 

with a simple configuration is made. In the first case, there was no degradation, and the structure 
was fixed to the base. Both methods were evaluated to compare their results. Figure 4 displays the 
correspondence between the two methods, with estimates of the probability of failure. The 
Confidence Interval (CI) is shown in dot lines and is imperceptible for Active Learning but 
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considerably larger for Monte Carlo simulations. The uncertainties associated with material, 
capacity, and load are quantified by the Modulus of Elasticity, yield strength, hardening coefficient, 
and live loads. 

 

 

FIGURE 4. Monte Carlo vs Active Learning Fragility Curve  
 

Figure 5 shows the difference lies in the required time to obtain each discrete point on the 
fragility curve. With the Active Learning method, the necessary time is much lower than in Monte 
Carlo. 

 

   

FIGURE 5. Monte Carlo vs Active Learning CPU Time  
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The Active Learning method demonstrates its robustness by measuring the estimation's 
coefficient of Variation (CoV). Referring to Figure 4, it is evident that the confidence interval is 
larger in the Monte Carlo simulations, while it is imperceptible in Active Learning-based Monte 
Carlo simulations. Figure 6 displays the comparison in the coefficient of variation (CoV), resulting 
in much smaller values for the Active Learning method. 

 

 

FIGURE 6. Monte Carlo vs Active Learning Coefficient of Variation  

 
It should be noted with a simple analysis, where factors such as degradation and soil-structure 

interaction are not considered. In the case of an acceleration of 0.3278g, Monte Carlo Simulation 
takes more than two days (60 hours) and 10 000 simulations to achieve a probability of failure of 
1.45% and a relatively high coefficient of variation of 8%. 

Changes in probabilistic fragility analysis are observed when the soil-structure interaction is 
considered, as well as a degradation model in nonlinear response. No implementation of these 
considerations in seismic studies may result in an unrealistic analysis that deviates from reality. 
Figure 7 shows the degradation in the structural fragility between the cases of fixed-base, SSI with 
no corrosion, and 20 years of corrosion, increasing the probability of failure for a given seismic 
acceleration. 
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FIGURE 7. Fragility variation in different scenarios 

 
When considering soil-structure interaction and degradation in seismic fragility analysis, the 

required time to access the failure probability increases by an average of 60%, making Monte Carlo 
simulations impractical. The computation time comparison in the following Figure 8 is based on 
the use of Active Learning. 

 

FIGURE 8. The computation time of the discrete points on the fragility curve with ALS 

VI. CONCLUSIONS  

Based on the results shown above, it is possible to reach the following conclusions: 

1. Soil-structure iteration can affect the seismic response of the structure, so it is important to 
consider it in the seismic analysis.  
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2. The degradation model due to corrosion can cause important variations in the pushover 
curve, which should be considered in seismic vulnerability studies. 

3. Active Learning-based Monte Carlo simulations are a more efficient methodology than 
crude Monte Carlo simulations in estimating the probability of failure and reducing the 
coefficient of variation in the fragility curve. 

4. Considering the degradation and soil-structure interaction in the seismic fragility analysis 
requires more time to estimate the probability of failure, making Monte Carlo simulations 
impractical. 

5. Significant changes in probabilistic fragility are observed when a degradation model is 
considered. Neglecting these considerations in the seismic vulnerability studies may lead 
to underestimating the damage. 
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