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ABSTRACT Many studies proposed machine learning approaches for prediction models 
analysing the impact factors on recycled aggregate concrete (RAC) compressive strength. 
However, most machine learning algorithms require a large dataset size for the model's 
generalisation capability. Few studies have used Bayesian Networks (BNs) based probabilistic 
inference techniques towards this aim. This paper uses BNs to predict the compressive strength 
of recycled aggregate concrete. The BNs approach utilised available data of three input 
parameters: water-to-cement ratio, aggregate-to-cement ratio, and recycled aggregate 
replacement ratio to compute the output's prior and posterior probability of RAC's compressive 
strength. The results highlight the potential applicability of BNs in predicting the compressive 
strength of RAC.  

Keywords Recycled aggregate concrete, Bayesian networks, Compressive strength.  

I. INTRODUCTION   

To use fewer raw materials, recycled aggregate (RA) offers a good substitute for natural aggregate 
(NA). When structures like bridges, buildings, roads, and trains are destroyed, as well as 
occasionally when disasters like floods, wars, and earthquakes occur, the resulting debris can be 
utilised to create RA. However, the mortar of the RA that has been bonded to it has decreased in 
quality because of increased porosity and water absorption (Zhu et al., 2020). This results in the 
quality of recycled aggregate concrete (RAC) being inferior to those of the original concrete, most 
obviously in its compressive strength (Eguchi et al., 2007). Many factors, such as the mixed design 
elements or the characteristics of the recycled aggregate (RA), have an impact on the compressive 
strength of RAC (Abdollahzadeh et al., 2016). 
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Moreover, its characteristics are also impacted by the interfacial transition zones (ITZs) (Poon 
et al., 2004). Nearly all investigations found that the compressive strength of RAC reduced as 
replacement increased (Alexandridou et al., 2018; Faella et al., 2016), while some have shown the 
opposite, particularly as later age (Basheer et al., 2005; Gholampour and Ozbakkaloglu, 2020) 
because RA particles have non-hydrated cement adhered to their surfaces. These residues react 
with water to increase the late strength development, resulting in a complicated relationship 
between mix ratio, RA physical characteristics, and compressive strength. 

Machine learning techniques have been created to forecast the compressive strength of RAC. 
They include Support Vector Machines (SVM), Radial Basis Functions (RBF), Neuro-Fuzzy 
Inference Systems (ANFIS), Genetic Programming (GP), and Artificial Neural Networks (ANNs). 
Dantas et al. (Dantas et al., 2013) presented the ANNs for predicting the compressive strength of 
RAC at the age of 3, 7, 28 and 91 days using 24 input parameters. Deshpande et al. (Deshpande et 
al., 2014) modelled compressive strength of RAC by ANNs, Model Tree (MT) and Non-linear 
Regression (NTR), which utilising 9 mandatory input parameters and 5 input non-dimensional 
parameters. Several researchers have examined the impacts of combining various ratios of the 
components that affect concrete's compressive strength (CS) and their estimation using all 
machine learning approaches (Nguyen et al., 2023). However, due to the uncertain nature of the 
materials and the many parameters involved in the problem, compressive strength prediction of 
RAC is still a challenging task.  

All machine learning algorithms need a sizable dataset to generalise the models (Bui et al., 
2018). Due to time constraints, the cost of the tests, and the implementation challenges in practice, 
learning can only be conducted with a limited number of sites in actual practice. As a result, other 
statistical and/or probabilistic methodologies could be used to quantify uncertainty while making 
the most effective use of the currently accessible data. Therefore, it makes sense to approach this 
topic using a Bayesian approach. To estimate the compressive strength of RAC, Bayesian 
networks (BNs) were used in the present study. The NETICA software package was used to 
create and run the BNs model. The model phases' prior and posterior probabilities were 
calculated using test data from numerous published publications. The Python programming 
language is used to create the BBNs-based updating prediction model. 

II. BAYESIAN NETWORKS AND ITS APPLICATION  

A. Bayesian Networks (BNs) 
A BNs is often a particular kind of graphical model represented as a directed acyclic graph 
(DAG). Nodes in a DAG represent variables or states and are graphical representations of things 
that happen in the real world. Drawing an edge between two nodes indicates a causal relationship 
between them. A directed edge will lead from the cause factor towards the effect variable if there 
is a causal connection between the nodes. There is a Probability Density Function (PDF) for each 
parameter in the DAG, and the concept and scale of the PDF are determined by the edges 
connecting to the variables. 
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FIGURE 1. A simple Bayesian Network 

A straightforward BN is depicted in figure 1; it has three nodes that stand in for the three 
considered parameters A, B, and C, with B and C being children of the parent node A. 
Conditional probability distributions for the child nodes are dependent on the parent node. A 
marginal probability distribution exists for the parent node. Given the prior and the conditional 
probabilities p(A) and p(B|A), Bayes' rule enables the computation of the posterior probability 
p(A| B): 

  (1) 

B. Application to predict compressive strength of RAC 
When employing AI techniques to predict the mechanical properties of RAC, the input data, 
chosen model, and hyperparameters are all crucial components in reaching the necessary 
accuracy (Ahmad et al., 2021). Most studies in the literature on the topic included crucial input 
qualities like cement content, water content, and W/C, as well as the testing age. In contrast, a few 
studies utilised physical traits like maximum aggregate size and water absorption of aggregate in 
prediction models (Nguyen et al., 2023). All the machine learning approaches utilised input 
variables related to mixing design, physical properties, and age of recycled aggregate concrete in 
the available literature. In this study, BNs also choose suitable input parameters to predict RAC 
compressive strength  (Nunez et al., 2021). Figure 2 depicts the BNs architecture for predicting the 
compressive strength of RAC considered in this study. It can be observed that the input variables 
are aggregate–cement ratio (A/C), water–cement ratio (W/C), replacement ratio (R), and 
compressive strength as output variable. The NETICA package is used to create the BN-based 
prediction model.  

Before defining the architecture of the BN, it is important to analyse if correlation between 
the considered variables (nodes) exists. Figure 3 shows the Pearson correlation coefficients that 
measure the linear connection between two variables or to quantify this relationship. It ranges 
from -1 to 1. A negative linear correlation between two variables is shown by a value of -1. No 
linear association between two variables is indicated by a 0, and a complete positive linear 
relationship between two variables is indicated by a value of 1. As shown in figure 3, the values 
vary from -0.29 to 0.4, resulting in W/C, A/C, and R being three independent input variables. 
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FIGURE 2. Proposed BNs for predicting compressive strength of RAC 

 

 

FIGURE 3. Correlation matrix of input parameters 

C. Assessment of prior and conditional probabilities 
Based on data from numerous previously published works (Suescum-Morales et al., 2021), all 
parent nodes are continuous and partitioned into various states within established constraints at 
the beginning of this phase. The intervals (upper and lower bounds) for each parameter should 
contain the parameter's theoretically/physically permissible values. These ranges can be 
determined using pre-existing databases, similar research cases, or expert knowledge. The 
boundaries of each node are given in table 1. 

TABLE 1. The discretisation of nodes for the model 
Nodes Number of states Boundaries 

W/C 5 [0.35, 0.6] 
A/C 3 [2, 3.2] 

R 4 [0, 100] 
Compressive strength 5 [25, 50] 

 

Water-
cement ratio

Compressive 
strength

RCA 
replacement 

ratio 

Aggregate–
cement ratio 
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Next, the prior probability was calculated directly from the relative frequency of the 
database. The details of the discretisation of the different nodes are summarised in Table 1 and the 
relative frequencies are shown in figure 4. The selected number of nodes and states results in a 
conditional probability table having a large number of rows. The minimum values for output 
parameters is 300 to fulfil the CPT.  

 

 
FIGURE 4. Histogram of all nodes in BNs 

 

Figure 4 also provides the parent and child nodes' prior probabilities and states of all nodes 
in the BNs. The table summarises the discretisation details and a priori knowledge of the various 
nodes. We can see from figure 4 that the water-cement ratio values in prior distribution are 
concentrated mainly in two states, 0.35-0.4 and 0.55-0.6; these are 34.3% and 25.1%, respectively. 
Regarding the aggregate-cement ratio, values in the distribution focus on 40.9% at state 2.8-3.2. 
The replacement ratio values in the distribution emphasise 37.5% and 37.5% at two states, 0-25 
and 75-100, respectively. The values of output prior distribution mainly concentrate on three 
states, 35-40 MPa, 40-45 MPa and 45-50 MPa; these are 23.4%,23.4% and 23.4%, respectively. Even 
if the prior probabilities of the parent nodes have different shapes, the distribution of the 
compressive strength is almost uniform. This highlights the non-linear relations between parent 
and child nodes that should be accurately represented by the BNs.  

The relationship in a BN is quantified by a set of tabulated conditional probabilities that 
display one probability distribution for each possible combination of parent values. This study's 
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conditional probability table (CPT) sizes would be (5x3x4) rows and 5 columns, respectively. By 
calculating the frequency with which the child node's value occurs when the parent node's value 
is given, the conditional probability values of the child node can be calculated. After that, the CPT 
values were reviewed and adjusted as necessary to satisfy engineering judgment. Table 2 shows 
the conditional probability table of the BNs model. These prior probabilities and conditional 
probabilities have been used for Bayesian inference. 

TABLE 2. Conditional probability table of the BNs model 
No. of 
rows 

 

Node and states States of node Compressive strength and  
Conditional probability  

W/C A/C R 25-30 30-35 35-40 40-45 45-50 
1 0.35-0.4 2-2.4 0-25 0 0.1667 0 0 0.8333 
… … … … … … … … … 
13 0.4-0.45 2-2.4 0-25 0 1 0 0 0 
… … … … … … … … … 
25 0.45-0.5 2-2.4 0-25 0.2 0.2 0.2 0.2 0.2 
… … … … … … … … … 
37 0.5-0.55 2-2.4 0-25 0.2 0.2 0.2 0.2 0.2 
… … … … … … … … … 
49 0.55-0.6 2-2.4 0-25 0.2 0.2 0.2 0.2 0.2 
… … … … … … … … … 
60 0.55-0.6 2.8-3.2 75-100 0 0 0.33 0.33 0.34 

D. Assessment of posterior probabilities 
The output (child) node, which has a marginal probability distribution, can be determined by the 
following equation: 

  (2) 

 

NETICA software package is useful to implement this BN and to compute the posterior 
probability of compressive strength results. The posterior probabilities of an output parameter are 
shown in figure 5. The results for the child node show that the states 25–30, 35–40 and 40-45 had 
the highest posterior probabilities of the output parameter, at 21.1%, 25.7%, and 21.1, respectively. 
The posterior results increase compared to the prior probability for the states 25-30 and 35-40, 
whereas the posterior probability of states 40-45 decreases by 2.3%.  
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FIGURE 5. Posterior probability of all nodes in BNs 

E. Assessment of belief or probability updating 
This BBNs-based evaluation approach has many advantages, including changing CPTs and node 
beliefs whenever new knowledge or data becomes available. The performance of the BBNs model 
can be adapted to new information/data for its nodes or parameters, allowing for the construction 
of a model by using the best data/information available and later incorporation of evidence. The 
results allow to use the best data currently available as evidence of observational data or variable 
correlations for distribution updating. 

 

 

FIGURE 6. Histogram of the output node (compressive strength) 

 

This study used data from a literature review (Casuccio et al., 2008; Kou et al., 2007) to 
evaluate beliefs or update probabilities to assess the effects of new information or evidence. In the 
approach, the output data was utilised to update the model. Because the output node had 
relationship with all input nodes, the posterior probability of all nodes was updated with 
observational data. It can be observed from figure 6 that the posterior probability values with 

wc
0.35 to 0.4
0.4 to 0.45
0.45 to 0.5
0.5 to 0.55
0.55 to 0.6

34.3
17.2
10.9
12.5
25.1

0.463 ± 0.082

r
0 to 25
25 to 50
50 to 75
75 to 100

37.5
6.20
18.8
37.5

51.6 ± 34

fc
25 to 30
30 to 35
35 to 40
40 to 45
45 to 50

21.1
15.6
25.7
21.1
16.6

37.3 ± 7

ac
2 to 2.4
2.4 to 2.8
2.8 to 3.2

21.3
37.8
40.9

2.68 ± 0.33
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evidence of output node have increased by 22% at the state 35-40. At other states, the posterior 
probability values decreased slightly at the states 40–45 and 45-50, these results are slower than 
without evidence by 0.5% and 2.5%, respectively. Table 3 summarises the model's posterior 
probability values of all parent nodes. It can be observed that the posterior probability of all input 
nodes has changed with new information. More specifically, the posterior probability of node 
W/C has maximum values for two primary states, 0.35-0.4 and 0.55-0.6, by 33.29% and 29.96% 
compared to the prior probability at 34.3% and 25.1%, respectively. The posterior probability of 
node A/C had a maximum value at the state 2.4-2.8 of 42.38% compared to the prior value at the 
state 2.8-3.2 of 40.9%. The posterior values of node replacement ratio focus on the states 0-25 and 
75-100, these results are 33.24% and 34.32% compared to 37.5% and 37.5% of prior values, 
respectively. 

TABLE 3. The posterior probabilities of the parent nodes 
Parameters States Prior probability (%) Posterior probability (%) 

Water to cement ratio 0.35-0.4 34.3 33.29 
0.4-0.45 17.2 17.89 
0.45-0.5 10.9 8.71 
0.5-0.55 12.5 10.15 
0.55-0.6 25.1 29.96 

Aggregate to cement 
ratio 

2.0-2.4 21.3 20.48 
2.4-2.8 37.8 42.38 
2.8-3.2 40.9 37.14 

Replacement ratio (%) 0-25 37.5 33.24 
25-50 6.2 7.76 
50-75 18.8 24.68 
75-100 37.5 34.32 

 

The Bayesian model in this paper can predict compressive strength from the values of input 
parameters. In figure 7, we assume that the prior probability of the W/C node is 10%, 80%, 
and 10% for three states 0.35-0.4, 0.4-0.45, 0.45-0.5, respectively. The prior probability of 
the A/C node is 10%, 80%, and 10% for three states 2-2.4, 2.4-2.8, 2.8-3.2, respectively. The 
prior probability of the R node is 10%, 80%, and 10% for three states 0-25, 25-50, and 50-
75, respectively. The Bayesian model shows that the probability of output has the highest 
value at the state 35-40 MPa. 
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FIGURE 7. Posterior probability of all nodes in BNs 

III. CONCLUSION  

Nearly all machine learning techniques were used to forecast RAC's compressive strength but 
needed a larger amount of input data. The BNs model, however, offers numerous benefits that 
other approaches do not. BNs can quantify uncertainty while maximising the usage of the 
currently available knowledge. The proposed model, grounded in probability theory, can be a 
fresh approach to illustrate the data by a probability distribution (the prior and posterior 
probability of input and output information). BNs are a suitable method if there is inadequate 
data or information. This model can still be developed using expert knowledge or a medium data 
set and information. According to the findings in the study, the suggested BBNs can also update 
the model whenever new information/data becomes available. The application is the strength of 
this method compared to other hybrid forms. We can quickly update information without 
spending much time on a new model. 
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