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ABSTRACT Acoustic emission (EA) has proven to be very suitable for detecting and monitoring 

cracking of materials and structures. EA signals can be analyzed either based on physical 

considerations (geophysics/seismology) or using their temporal and frequency characteristics. 

However, the multitude of definitions related to the different parameters as well as the treatment 

methods make it necessary to develop a comparative analysis in the case of a heterogeneous 

material such as civil concrete.  To this end, this contribution aims to study the microcracking of 

reinforced concrete T-beams subjected to quasi-static mechanical tests. To do this, four-point 

bending tests, carried out at different travel speeds, were carried out in the presence of a network 

of acoustic emission sensors. A comparison between the damage susceptibility of three 

definitions corresponding to the parameter b-value was carried out and supplemented by the 

evolution of the RA value and the mean frequency (AF) as a function of loading time. This work 

also shows the use of the support-vector machine (SVM) method to define different areas of 

damage in the load-displacement curve. This work shows the limitations of this approach and 

proposes the use of an unsupervised learning approach to group EA data according to physical 

parameters as well as time/frequency parameters. Finally, this work discusses the advantages 

and limitations of the different methods and parameters used in relation to the micro/macro 

mechanisms at the origin of concrete cracking. 
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I. INTRODUCTION 

The degradation in strength of concrete structures is very common, which is usually attributed to 

ageing, fatigue, corrosion, increase in service loading, environmental impacts, and so on (Prem et 

al., 2017). Acoustic Emission (AE) appeared to be highly promising to monitor various concrete 

structures through nondestructive means (Dzaye et al., 2018, Mandal et al., 2022). AE techniques 

are based on the detection of the transient elastic waves from a source within the material (An et 

al., 2014). These AE signals are mainly burst type and can be attributed to various sources such as 

micro crack initiation, propagation of crack fronts, yielding of the reinforcement, bond failure, 

delamination, and so on (Meo et al., 2014). The major advantage of an AE based technique is its 

ability to perform a real time monitoring of a large volume of a structure (Tonolini et al., 1987). AE 
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features can be analyzed by means of physical considerations to evaluate the predominant damage 

mechanisms. AE features such as rise time, amplitude and average frequency were considered to 

study the fractures created in various brick and mortar samples (Aggelis et al., 2011). The severity 

of a damage was evaluated using the seismology parameter called b-value. The seismology 

parameter b-value, being sensitive to the coalescence of micro-damage into macro-cracks, has been 

used in several studies for the detection and monitoring of damage development (Shiotani et al., 

2000).  

The classification of crack modes in concrete is one of the very important objectives since the crack 

modes depend on the state of degradation of concrete.  AE based techniques were used to classify 

crack modes in reinforced concrete beams, subjected to bending (Aggelis et al., 2011, Soulioti et al., 

2009, Aldahdooh et al., 2013). Gaussian mixture modelling (GMM) probabilistic method have been 

employed to classify cracks using AE data (Prem et al., 2017). Das et al. (2019) used a combined 

framework of Gaussian Mixture Models and SVM for classification of cracking modes in steel fiber 

reinforced concrete beam under bending and strain hardening cementitious composite samples 

under tension loading. The classification of crack mode shows that majority of AE events were 

caused by matrix cracking during strain hardening, however during the softening phase, more 

events were found to be created by fiber pull out. Soulioti et al. (2009) investigated the influence of 

fibre content on the fracture modes of concrete beams. It was observed that the dominating fracture 

mode is tensile for unreinforced concrete, however the dominating mode of fracture changes to 

shear with the increase in fibre content of reinforced concrete. Anay et al. (2018) identified three 

distinct crack behaviors, namely initiation of microcrack, crack extension, and unstable crack 

growth in cement-paste specimens subjected to compression loading. Research contributions have 

revealed that AE signals can also be used to study the nonlinear relaxation (slow dynamics) 

behaviors of concrete (Bentahar et al., 2020, Bentahar et al., 2006). Because of the huge volume of 

data usually obtained in the AE based monitoring, reduction of dimensionality of data, without 

losing much information, becomes extremely important for the meaningful interpretation of the AE 

data. Principal component analysis (PCA) is often employed to reduce the dimension of AE data 

obtained from concrete and composites (Anay et al., 2018). Tayfur et al. (2018) investigated micro 

cracking of steel fibers reinforced concrete beams under bending and clustering of the data revealed 

existence of two types of failures modes, namely matrix failure and steel fiber/matrix debonding. 

Sun et al. (2021) studied failure process of crumb rubber concrete under 4-point bending using 

various clustering methods, namely k-means, self-organizing mapping (SOM), Gaussian mixture 

model (GMM), hierarchical model, fuzzy c-means (FCM), and density peak clustering to find the 

best suited algorithm, and the density peak algorithm was found to be most suited for that scenario. 

The present research work focuses on the characterization of reinforced concrete T-beams subjected 

to four-point bending quasi-static tests, monitored with AE sensors to extract various AE signals, 

emitted during the creation and propagation of micro-cracks. The reinforcement steel bars prevent 

the beam from fragile catastrophic failure, hence improving the post-peak behavior (Soulioti et al., 

2009). A comparative study on various physical parameters (e.g., b-values, RA- value, average 

frequency) has been done and the applicability of these parameters in the progressive damage 

assessment of concrete has been shown. Support vector machine (SVM) based classification has 

been adopted to separate the load-displacement curve into different zones, as per the involved 
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damage mechanisms. However, it appears that assigning the classes becomes difficult if multiple 

damage mechanisms are present in a particular zone. Hence, an unsupervised machine learning 

scheme has been proposed for clustering AE data, which allowed to identify clusters based on the 

hidden pattern in the AE data.  

II.  THEORETICAL BACKGROUND 

This section focuses on some algorithms, commonly used in AE based analysis, and the supervised 

and unsupervised learning approaches have also been presented.  

A. Average frequency (AF) and RA value (RA)  

Average frequency (AF) and RA value are the two most sought-after parameters used to identify 

crack modes in concrete structures (Ohtsu et al., 2010). AF is defined as the ratio between the 

number of threshold crossings (i.e., counts) and duration of an AE waveform.  Whereas, RA value 

is defined as the ratio between the rise time and amplitude (Aggelis, 2011), as shown in Fig. 1.  

 

FIGURE 1. Schematic representation of an AE signal and definition of some important AE parameters 

Many researchers have reported that AE waveforms which are generated due to tensile cracking 

have relatively shorter rise time. Hence, a tensile crack would generate AE signals with a lower RA 

value and higher AF. Whereas, in the case of a shear crack, AE waveforms have a longer rise time, 

which results in a relatively higher RA value and lower AF (Aggelis et al., 2013). 

B. The three distinct b-values  

According to the literature, there are three different b-values, namely b1 -value, b2 -value and b3 -

value, usually used in geophysics to investigate the fracture process in rocks (Niu et al., 2019). 

b1– value: The pioneer work using the b1 – value was done by Shiotani et al. (1994) to study 

progressive failure. The expression of b1 – value is given as:  

𝑏1 =
𝑙𝑜𝑔10𝑁(𝜇−𝛼1×𝜎)−𝑙𝑜𝑔10𝑁(𝜇+𝛼2×𝜎)

(𝛼1+𝛼2)𝜎
                (1) 

where N -number of recent AE events, μ - mean value of the amplitudes of those events, σ - standard 

deviation of those amplitudes, α1 and α2 are empirical constants, usually 0 and 1, respectively. 

Although b1 - value was first employed to study fracture process in rocks, but later used to study 

fracture process in concrete (Aggelis et al., 2011). Researchers (Aggelis et al., 2011) have found that 

micro-cracks lead to relatively higher values of b1–value and macro-cracks lead to lower b1–value. 

Hence, a decrease in the b1–value may indicate successive accumulation of stress associated with a 

propagating rupture front. 
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𝑏2– value: In seismology, C. F. Richter and B. Gutenberg proposed an empirical relationship between 

the frequency of occurrence of earthquakes and their magnitudes, as given in eq. (2). The exponent 

of the expression is known as b-value (Burud et al., 2019).  

N(≥ M) = 10𝑎−𝑏∗𝑀     𝑜𝑟,    lo g(𝑁) = 𝑎 − 𝑏 ∗ 𝑀                      (2) 

where N - number of earthquakes whose magnitude is ≥ 𝑀. 𝑎 and 𝑏 are constants for an area over 

a span of time (Sagar et al., 2014). Because of the difference in measurement unit between AE 

amplitude and earthquake, it has been suggested to use the following equation for estimation of 𝑏2-

value in concrete (Niu et al., 2019).  

lo g(𝑁) = 𝑎2 − 𝑏2 ∗ (
𝐴𝑑𝐵 

20
)                (3) 

N - number of acoustic emission hits of amplitude ≥ 𝐴𝑑𝐵, 𝑎2 -a constant which depends on 

background noise.  

𝑏3 – value: It was introduced by K. Aki (Aki, 1965). The expression to find 𝑏3–value is (Niu et al., 

2019):  

𝑏3 =
20 𝑙𝑜𝑔10 𝑒

𝑎𝑎𝑣𝑔.−𝑎𝑐
                  (4) 

where, 𝑎𝑎𝑣𝑔  - average amplitude, and 𝑎𝑐 - threshold magnitude (Aki, 1965). 

C.   Machine learning approaches 

The present research work encompasses both the supervised and unsupervised learning for the 

interpretation of AE data. The fundamental difference between these two approaches is that in 

supervised learning technique a model is first trained with labelled data to predict future outputs, 

whereas, an unsupervised learning technique finds the hidden patterns in the input data, hence no 

need of labelled data.  The supervised and unsupervised schemes used in the present study are 

presented in the subsequent section. 

Support-vector machine (SVM): Support-vector machine (SVM) is a supervised learning tool, often 

used for classification. SVM tries to find an optimal separation boundary (i.e., hyperplane) between 

classes, which results in an efficient classification of data (Hastie et al., 2009). An important feature 

of SVM is its various kernel functions, such as Gaussian radial basis function (RBF), Polynomial, 

Sigmoid (i.e., neural network), and Linear.  

Unsupervised learning scheme: The unsupervised learning scheme adopted here involves three steps- 

feature selection, optimization, and clustering. The important features are first identified using 

Laplacian score (He et al., 2004) and then these features are optimized using principal component 

analysis (PCA). Finally, clustering of optimized data is performed by k-means algorithm (Likas et 

al., 2003), which partitions data into k-number of mutually exclusive clusters. The point to be noted 

that the optimal number of clusters k is determined with the help of Davies-Bouldin (DB) index 

(Davies et al., 1979) and Silhouette coefficient (SC) (Rousseeuw et al., 1987).  

III. AE MONITORED MECHANICAL TESTS 

The four-point quasi-static bending tests have been carried out on 3.50m long reinforced concrete 

T-beams using the Universal Testing Machine (INSTRON 8801), as given in Fig. 2. The details of 

the cross section of the beam have also been shown there. The characteristic strength of concrete 
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and steel of the beams are given in Table 1. The distance between the upper loading points is 1m 

and distance between supports at the bottom is 3m. The displacement rates applied are 1 mm/min, 

2 mm/min, and 4 mm/min for the three identical samples, namely sample 1, sample 2, and sample 

3, respectively. The mechanical tests were monitored by four AE sensors, which are broad band 

type PAC (MICRO-80). The threshold and pre-amplifier gain were assigned as 45 dB and 40 dB, 

respectively. 

TABLE 1. Mechanical properties of the reinforced concrete T-beams, provided by the manufacturer 

RECTOR® 

Ingredients Characteristics  

Concrete Compressive strength = 50 MPa 

Steel 
Ultimate tensile strength = 525 MPa 

Yield strength in tension = 500 MPa 

 

  

FIGURE 2. Experimental set-up: UTM, AE-setup, and 

sample beam (ᴓ1, ᴓ2 -are diameters of longitudinal steel). 

FIGURE 3. Load-displacement curves of 

the tree samples obtained from the test 

IV.  RESULTS AND DISCUSSION 

Since the study considers many algorithms which normally produce many results. However, due 

to the limitation in page, only some representative results have been presented. 

A. Global analysis  

The results of quasi-static bending tests on three different samples are found to be very similar (Fig. 

3), although the loading rate was not the same for the three samples. A point to be noted that a 

sudden drop in the load-displacement curve indicates formation of a major crack in the sample 

during the test. We also noted that the loading rate has a clear effect on the duration of the tests, 

since rupture of sample 1, sample 2 and sample 3 were found to happen at 650s, 1300s, and 2300s, 

approximately. The AE data shows that the AE activity evolves as a function of the applied load, in 
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other words, for major cracks the AE amplitude gets higher values and a significant jump have been 

observed in cumulative AE hits (Fig. 4).  

  
(a) (b) 

FIGURE 4. (a) Variation of load and AE amplitude with time, (b) variation in cumulative AE hits with 

time (sample 3) 

  
(a) (b) 

  
(c) (d) 

FIGURE 5. Evolution of (a) b1-value, (b) b2-value, (c) Average frequency, and (d) RA-value (sample 3) 

B. Physical parameters-based analysis of damage 
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In this section, some representative results on b-value, AF, and RA-value analysis have been shown. 

The results obtained using different b-value definitions show that these parameters sharply 

decrease in case of macro‐crackings (Fig. 5 (a, b)). These results are in line with studies performed 

on geomaterials (Niu et al., 2019). The fracture modes can be monitored using the evaluation of 

average frequency (AF) and RA-value.  It has been observed that AF is higher, and RA-value is 

lower if the fracture mode is dominated by tension cracking. On the contrary, a sudden drop in AF 

and a sharp increase in RA-value occur if the fracture mode is strongly shear (Fig.5 (c, d)). This 

observation is in line with many studies (Aldahdooh et al., 2013) 

C. Machine learning schemes 

SVM based analysis (supervised): In this method, initially three different classes (i.e., zone 1, zone 2, 

and zone 3 (Fig. 3)) were assigned. However, in the case of three labels it has been observed that 

zone 1 comes within zone 2 (Fig 6(a)). This could only possible when the data of zone 1 has 

similarity with some data of zone 2. Therefore, zone 1 and zone 2 are combined to a single class 

(zone 1 + zone 2) and then SVM was applied. A very good separation boundary was obtained (Fig 

6(b)). The Gaussian kernel trick of SVM has been found to be very efficient in the classification of 

AE data. However, the existence of multiple damage mechanisms poses difficulty to label. Hence, 

there is a need of an unsupervised learning approach, without needing labelled data for the 

classification. 

  

(a) (b) 

FIGURE 6. SVM classification using Gauss kernel: (a) three labels, (b) two labels (sample 2) 

Unsupervised machine learning scheme: In this section a large number of features were considered. 

Following the steps, as described in the theory section, clustering has been done. A representative 

result has been shown in Fig. 7.  The AE signals of the three clusters do not possess the same 

characteristics. For example, cluster 1 is found to possess the highest frequency signals, on the other 

hand, cluster 3 consists of lowest frequency signals, while cluster 2 consists signals of intermediate 

frequency components, as shown in Fig. 8. It should be noted that due to shear, more friction at 

shear cracking is expected, and the resulting shear waves filter out higher-frequency components 

significantly (Zhang et al., 2022). In considering these aspects, the results obtained suggest that 

cluster 3, which consists of weakest frequency signals (around ~50 kHz) is related to friction, while 

cluster 1 indicates tensile cracking (around ~350 kHz). On the other hand, cluster 2, i.e., signals with 
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intermediate frequency components (around ~150 kHz), represents combination of both shear and 

tensile cracking (Yang et al., 2014). 

 

FIGURE 7. Clustering using k-means 

   
(a) (b) (c) 

   
(d) (e) (f) 

FIGURE 8. Representative signals in time and integrated time-frequency domain: (a, d) cluster 1,  

(b, e) cluster 2, (c, f) cluster 3 

V.  CONCLUSIONS 

Acoustic emission (AE) monitored four-point test has been performed on three identical reinforced 

concrete T-beams to study the evolving damage mechanisms during the test. The load-

displacement curves of the three samples are found to be very similar, hence repeatable. The 
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physical parameter-based algorithms, i.e., three different b-values, average frequency (AF), and 

RA-value, all are found to be very sensitive to the evolving damage mechanisms, although the 

individual algorithms may use different AE feature/s. For example, in the case of tensile cracks, b-

values and AF are found to have higher values, while for shear cracks these parameters get lower 

values. RA -value is found to be extremely sensitive to the evolving damage mechanisms and 

follows the reverse trend to the formers.  In case of classification using SVM, two classes were 

successfully made considering only the AF and RA value. The Gaussian kernel of SVM has been 

found to be very efficient to classify AE data. Although SVM worked well in classification, however 

it becomes difficult to classify the data if multiple mechanisms are present in a particular zone of 

load-displacement curve. Hence there is a need of an unsupervised scheme. The adopted 

unsupervised method is based on k-means. Three clusters were obtained, which have been 

identified as tensile cracking (cluster 1: high frequency signals), both shear and tensile cracking 

(cluster 2: intermediate frequency signals), and friction (cluster 3: low frequency signals). 
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