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ABSTRACT Spatial variability of concrete resistivity is a key element for optimal design of 

embedded resistivity sensors, which allow to catch chloride ions propagation in concrete 

structures. Its temporal evolution and its dependence on the vibration protocol remains however 

unknown. In this paper, we address these questions by assessing time-evolution of spatial 

variability of apparent resistivity of 10 concrete beams realized with two different vibration 

protocols (needle and table) and placed in a climatic chamber. We find that each beam exhibits 

(i) a time-independent resistivity spatial signature, and (ii) a periodicity of correlation in space, 

roughly corresponding to the lag of vibration protocol for both. This suggests time-invariance of 

resistivity’s spatial variability of sound concrete and its strong dependence to vibration protocol. 

Mots-clefs variabilité spatiale, résistivité apparente, béton, protocole de vibration, données 

Key-words spatial variability, apparent resistivity, concrete, vibration protocol, data 

I. INTRODUCTION 

It has been shown, over the past 20 years, that knowledge of the spatial variability of concrete 

properties is a key element of reliability-based maintenance. Moreover, in the last decade, 

embedded sensors based on resistivity measurements have demonstrated their interest in 

monitoring concrete curing and monitoring chloride ions penetration (Lecieux et al., 2019), which 

is a key durability indicator. These sensors consist of electrodes aligned on a PVC support and allow 

to measure resistivity along a structural component (beam). Their optimal design (length, distance 

between electrodes) and their optimal distribution pattern in a structure depend on the knowledge 

of the spatial variability of resistivity, respectively at the component scale and at the structural scale. 

 To render their spatial variability, concrete properties should thus be considered a priori as 

Random Fields (RF) instead of random variables. RF are defined by a marginal distribution and a 

semi-variogram 𝛾 , with first one describing variability between similar concrete elements and 

second one a function describing variability within a single concrete element (Clerc, 2021, para. V; 

Cressie, 1991). More specifically, as illustrated by its estimator 𝛾 (Equation (1)), 𝛾 represents the 

variance of the difference between two measurements of the same property according to the 

distance lag ℎ between them. In the following, we note 𝑍 a RF defined on a domain 𝐷, and 𝑍(𝑥) 

any of its realizations georeferenced by a vector 𝑥, called a trajectory. 

γ̂ =
1

2𝑁ℎ

∑ [𝑍(𝑥𝑖) − 𝑍(𝑥𝑖 + ℎ)]2

𝑖=1,…,𝑁ℎ

 (1) 
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In this paper, we focus on the analysis and assessment of the spatial variability of the resistivity 

at the component scale through the monitoring of 10 specimens in time. These are realized with 

two vibration protocols (needle and table), whose comparative effects on spatial variability remain 

unknown. After introducing the experimental procedure (II) and analyzing raw data to select 

adapted RF models (III), we detail our methodology for spatial variability assessment of apparent 

resistivity (IV) and expose our results (V) and conclusions (VI). 

II. EXPERIMENTAL PROCEDURE 

A. Apparent resistivity measurement 

The Wenner method (shown in Figure 1) is commonly used for detecting apparent electrical 

resistivity (𝜌) of the subsurface. It involves placing electrodes at fixed intervals (𝑎) and measuring 

potential differences (𝑉) between testing points. By varying the intervals (𝑎) it allows to measure 

the apparent resistivity at different layers following Equation (2). In a semi-infinite medium, 

𝐾(𝑎) = 2𝜋𝑎 × 𝑉/𝐼 whereas it is determined through Finite-Element computation otherwise (du 

Plooy et al., 2013). Note that for low 𝑎 values, apparent resistivity is close to true resistivity because 

of the limited length of current lines. 

𝜌 = 𝐾(𝑎) × 𝑉/𝐼 (2) 

B. Material and specimens 

In the following, we study apparent resistivity data coming from 10 concrete specimens of research 

project SIMAR. These are made from the same concrete in two different designs, and placed in a 

climatic chamber. They include embedded Wenner sensors constituted of 32 evenly-distributed 

electrodes with a 3.5-mm spacing, allowing to measure apparent resistivity at 29 points at a depth 

of 13.5 mm and at 26 points at a depth of 19.4 mm (Figure 2). Both 13.5 and 19.4 mm are low depths 

at which the true resistivity is close to the apparent resistivity (section II.A). 

SIMAR project involves a first set of 9 specimens made on 07/11/2022, labeled from I to Q and 

monitored over four months. These were poured in a single operation and vibrated using a 

∅25 mm vibrating needle with a regular spacing of 175 mm, for 10 seconds at each point (Figure 3). 

It involves another single specimen, labeled iM made on 03/05/2022 and monitored over ten 

months. Its formwork’s sides were separated by a metal plate in order to cast two similar concretes 

with different chloride concentrations (60 g/l on one side, no salt on the other). Each of them was 

poured by 10-cm thick layers vibrated for 20-25 seconds using a ∅25 mm vibrating needle. This 

was placed under and perpendicular to the formwork support, in the middle of each part (Figure 

4). This induced vibration of both the formwork and the plate, resulting in a longitudinal vibration 

spacing of 29 cm. Metal plate was removed after 1.5 hours to keep concrete parts from mixing. 

    

Figure 1. Schematic view of 

Wenner protocol 
Figure 2. Specimen 

dimensions 

Figure 3. Vibration 

protocol (I to Q) 

Figure 4. Vibration 

protocol (spec. iM) 

80 

mm 
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III. APPARENT RESISTIVITY EVOLUTION  

A. Specimen I to Q 

Processed apparent resistivity data along specimens I to Q constitute 106 1D apparent resistivity 

trajectories, for 9 specimens, 6 times and 2 depths. These are plotted in Figure 5. Their analysis 

shows following points: (i) apparent resistivity increases over time due to hydration reactions at 

both depths, with lower values in the deeper layer ; (ii) trajectories with common depth and time 

exhibit stationary trends, as previously observed (Priou et al., 2019) ; (iii) mean and variance of 

apparent resistivity show an increasing trend for common beam and depth, while histogram shapes 

are closely symmetric and approximate normal distributions. Data can thus be preliminary 

considered as realizations of unidimensional Gaussian Random Fields (GRF). 

B. Specimen iM 

Processed apparent resistivity data along specimen iM constitute 20 1D trajectories, for 1 specimen, 

10 times and 2 depths. These are plotted in Figure 6. Their analysis indicates that data can be 

preliminary considered as realizations of Trend and Variance-Stationary GRF (noted as TS-VS GRF) 

with stepwise means and variances. 

C. Specimens’ signatures 

In addition to these observations, plotting of roughly standardized data (with classical mean and 

variance estimates) reveal that each depth of each specimen has its own spatial signature, namely a 

proper time-invariant apparent resistivity pattern (Figure 7). This is in line with observations of 

(Priou et al., 2019) and lead ourself to focus on the geostatistical study of these spatial signatures. 

 
Figure 5. Apparent resistivity trajectories and their histograms (spec. I to Q) 

 
Figure 6. Apparent resistivity trajectories (spec. iM) 
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Figure 7. Standardized trajectories of all specimens 

IV. SPATIAL VARIABILITY ANALYSIS 

A. Empirical semi-variograms 

We start spatial variability analysis by plotting empirical semi-variograms of standardized data, 

following recommendations of (Cressie, 1991, p. 97) (Figure 8). As expected, these show same 

patterns for common specimen and depth along time, with a slight change after one month.  

This could result from the vibration protocol, especially the spacing of vibrating needle during 

pouring. In the following, we investigate this assumption by focusing on geostatistical 

characterization of standardized trajectories coming from second depth of previously cited 

specimens. These are called hole-effect trajectories. Note however that this behavior is not observed 

in the 13.5-mm layer. This may be due to the mainly circular action of the vibrating needle as well 

as the low differences between layer depth, the size of the electrodes and the distance between them, 

which may affect boundary and add local geometrical effects. 

 
Figure 8. Empirical semi-variograms of standardized trajectories of both projects 

iM

Specimen ages - specimen iMSpecimen ages - specimens I to Q

iM

iM

iM

Specimen ages - specimens I to Q Specimen ages - specimen iM
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B. Geostatistical characterization of hole-effect trajectories 

Purpose of the geostatistical characterization of hole-effect trajectories is to check statistical 

significance of the observed hole effect by identifying the best semi-variogram models for their RF, 

and to check its eventual link to the vibration protocol by estimating and comparing their 

fluctuation parameters. To do so, we follow the SCAP-1D method proposed by (Clerc et al., 2019), 

illustrated on Erreur ! Source du renvoi introuvable.Figure 9, with RF considered as Standard 

GRF due to previous observations. 

In a first time, we perform this process considering trajectories as realizations of independent 

RF. Statistical significance of the observed spatial signature is then considered only if there is an 

overlap between confidence intervals (CI) of fluctuation parameters of semi-variograms for 

common specimen and depth. 

In Step 1, we select 4 eventual models for 𝛾, listed in Table 1. Models 2, 3 and 4 render hole 

effect and are selected from (Chilès and Delfiner, 2012; Pyrcz and Deutsch, 2003). Model 1 doesn’t 

render hole effect but is selected to check statistical significance of the observed hole effect. Model 

3 and 4 share a common parameter λ, which is the wavelength of the correlation. In Model 4 variance 

of Gaussian part is obtained from variance of cosine part 𝑠2, as both contribute to the unit variance 

of the Standard GRF. 

 In Step 2, we estimate parameters for each model through Maximum Likelihood Estimation 

(MLE) computed from the data (Clerc et al., 2019; Wasserman, 2004). Initial values of the 

optimization process behind this method are given through weighted Least-Square Estimates 

(wLSE) made on the empirical semi-variograms (Chilès and Delfiner, 2012). 

In Step 3 and 4, we check statistical validity of the standard GRF models and estimates, i.e 

stationarity and normality of the decorrelated data, as well as trajectories ergodicity, required to 

perform estimates trajectory per trajectory. To ensure robustness, decorrelation is done with both 

empirical and modeled covariance matrix ( Σ𝑒𝑥𝑝  and Σ𝑚𝑜𝑑 ). Stationarity test is the KPSS-test 

(Kwiatkowski et al., 1992), normality tests are the Kolmogorov-Smirnov and the Shapiro-Wilk ones 

(de Smith, 2018). Ergodicity is checked when semi-variograms show an asymptotic behavior 

(Cressie, 1991, p. 57). 

Table 1. Selected semi-variogram models for the estimation 

# Type Name Model Parameters Nb of parameters 

1 Monotonic Gaussian  𝛾/2(ℎ) = 1 − exp(−(ℎ/𝑎)2)  𝑎 > 0 1 

2 

Hole effect 

Cardinal sine 𝛾/2(ℎ) = 1 − sin(ℎ/𝑎) /(ℎ/𝑎)  𝑎 > 0 1 

3 Damped cosine γ/2(h) = 1 − (exp(−q. h) × cos (
2𝜋

𝜆
. h))    𝑞, 𝑏 > 0 

2 

4 Gaussian-cosine γ/2(h) = (1 − s2) × [1 − exp (− (
ℎ

𝑎
)

2

)] + s2 × [1 − cos (
2𝜋

𝜆
. h)]     

𝑠2, 𝑎 , 𝑏 > 0 
3 

 

For each trajectory, identification of the best semi-variogram model is done in two steps: (i) we 

compute the corrected Akaike Information Criterion (AICc) for each model 𝑖 (Equ. (3)); (ii) we 

compare their goodness-of-fit by computing their Evidence Ratios (ER), with a unit value for the 

best (Equ. (4)). This procedure allows to select the most accurate model that describes the hidden 

RF in case of few data (Burnham et al., 2010). We note 𝐿(�̂�|𝑍(𝑥)) the likelihood of hidden RF model 

with 𝐾 parameters estimated by MLE (�̂�), given 𝑍(𝑥) trajectory with 𝑛 datapoints. 
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𝐴𝐼𝐶𝑐 = 𝐴𝐼𝐶 +
2𝐾(𝐾 + 1)

𝑛 − 𝐾 − 1
= −2ln(𝐿(p̂|𝑍)) + 2𝐾 +

2𝐾(𝐾 + 1)

𝑛 − 𝐾 − 1
 (3) 

𝐸𝑅𝑖 = 𝑒𝑥𝑝 (
1

2
[𝐴𝐼𝐶𝑐𝑖 − 𝐴𝐼𝐶𝑐𝑗𝑚𝑖𝑛]) (4) 

V. RESULTS 

A.  Estimations of parameters for each trajectory 

As an illustration of estimation results, we plot on Figure 10 empirical semi-variograms related to 

14 week-aged specimen L, as well as its estimate with the 4 models. As a synthesis of the whole 

estimations, we plot on Figure 11 the ERs of each model fit for each hole-effect trajectory. The bars 

below value of 1 indicate then the best-fit model for each trajectory. This plot clearly shows that 

models with hole effects have better fit than the monotonic one. We thus plot on Figure 12 estimates 

and CIs of wavelength 𝜆 only for models 3 and 4. 

  

Figure 9 : SCAP-1D flowchart Figure 10.  Illustration of semi-variogram models 

estimates – specimen L, 14 weeks age 

 
Figure 11. Evidence Ratio comparison of each model for each specimen (log-scale) 
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Figure 12. Estimates of wavelength 𝜆 of models 3 and 4 for each specimen (log-scale) 

B. Estimation of parameters for sets of trajectories 

Since CI of fluctuation parameters’ estimates merge well for common specimen and depth, we 

consider these sets of trajectories as realizations of the same RF to take this into account in the 

estimates and reduce their CIs. Figure 13 shows then the computed ERs, where we see the best fit 

for both projects are either model 3 or 4. For specimen N, goodness-of-fit of model 1 and model 3 

are equivalent and we keep model 3 as we observe hole effect empirically. Thus, we plot the 

wavelength parameter λ estimates and CIs for each best model on Figure 14. We see then that for 

specimens I to O, λ  falls between 14 cm and 21 cm with very tight CIs, close to the 17.5 cm 

manually vibration spacing, whereas for specimen iM λ is 23 cm, with a CI ranging from 21 cm to 

25 cm, close to the vibration spacing of 29 cm. 

  

Figure 13 Evidence Ratio comparison of each model 

for sets of trajectories (log-scale) 

Figure 14 Values and Confidence Intervals of 𝝀 

from best hole-effect models of both projects 

VI.  CONCLUSIONS 

In this paper, we study the spatial variability of 126 Wenner apparent resistivity trajectories 

measured on concrete specimens poured with two different vibration protocols in the context of 

French project SIMAR (9 specimens monitored for 4 months, 1 for 10 months). We especially focus 

on the evolution of this spatial variability with time, and on its link with vibration protocol. From 

the work presented in previous sections, we draw conclusions which follow. 

(1) Apparent resistivity evolution shows an increase in mean and variance with time for each 

specimen and depth due to fewer free chlorides during concrete settling and hardening. The deeper 

layer has lower resistivity compared to the shallow layer. Data in the early age are similar, but in 

the last six months, there are slight changes that could be influenced by environmental factors.    
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(2) Empirical spatial variability of apparent resistivity exhibits a significant time-independent 

spatial signature for common specimen and depth. In particular, significant hole-effect is observed 

at deeper depth.  

(3) Estimation of spatial variability at deeper depth, based on the robust SCAP-1D procedure 

and considering 4 different semi-variogram models, supports the significance of the empirical 

observation of hole effect. Indeed, damped cosine and Gaussian-cosine models, which render hole 

effect, were found to be the best-fit models. It also supports the significance of the spatial signature 

in two ways: (i) common spatial variability is identified for common specimen and depth, and (ii) 

estimated wavelength 𝜆 of semi-variogram models roughly corresponds to the lag of vibration 

protocol for both structures. This latter observation suggests the tight link between concrete 

properties’ spatial variability and its vibration protocol, also noticed by (Clerc, 2021, para. VII.2; 

VII.3) with both chloride content and resistivity spatial variability on an in-situ RC beam.  

Note that due to the low Wenner electrode spacing values at studied depth (7 mm and 14 mm), 

our conclusion may also apply to resistivity. 
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