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ABSTRACT. A new theoretical formulation about the viscosity of a multimodal concentrated suspension of non-colloidal 
spherical rigid particles in a Newtonian fluid is presented: the relative viscosity can be linked both to the volume fraction of 
the suspended particles in a total volume unity and to the solid fraction of the dry mixture. Therefore, it takes into account 
hydrodynamic interactions and geometrical interactions between particles. Concerning the first ones, it resorts to an 
iterative approach by change of scale method according to the concept of Farris. Concerning the second ones, when the 
volume fraction of the suspended particles reaches its critical value, the suspension is jammed and the mixture reaches the 
solid fraction of the solid skeleton which is predicted by the Compressible Packing Model (CPM). This one takes into 
account both the loosening effect on big particles by interstitial small ones and the wall effect within assemblies of small 
particles near a big one. Our predicted viscosities are in good agreement with experimental data of relative viscosities 
obtained on binary mixtures with 3 different size ratios, for glass beads in silicone oil. 
 
 
 
RÉSUMÉ. Une nouvelle formulation théorique concernant une suspension concentrée multimodale de particules sphériques 
rigides non-colloïdales dans un fluide Newtonien est présentée: la viscosité relative peut être reliée à la fois à la fraction 
volumique des particules suspendues dans un volume total unité et à la compacité du mélange sec. Elle tient compte des 
interactions hydrodynamiques et des interactions géométriques entre particules. Concernant les premières, elle fait appel à 
une approche itérative de type changement d'échelle conformément au concept de Farris. Concernant les secondes, lorsque 
la fraction volumique des particules suspendues atteint sa valeur critique, la suspension devient empilement et le mélange 
atteint la compacité du squelette solide prédite par le Modèle d'Empilement Compressible (MEC). Celui-ci tient compte à la 
fois de l'effet de desserrement provoqué par les fines particules sur les grosses et de l'effet de paroi provoqué par ces 
dernières sur les plus petites. Nos viscosités calculées sont en bonne adéquation avec les viscosités relatives expérimentales 
obtenues sur des mélanges binaires avec 3 rapports de tailles différents, pour des billes de verre dans une huile de silicone. 
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1. Introduction. 

Knowledge of the viscosity of concentrated suspensions involves a significant number of sectors like biology 
and medicine (human red cells), manufacturing and materials science (nanopowder systems), mineral processing 
(drilling fluids), soil science (flow of sediments). In civil engineering, a multitude of heterogeneous materials, 
like concrete, bitumen binder, are easy to flow if their viscosity is low. At the same time, a dense mixture must 
be sought, not only to reach a good strength, but also with the aim of decreasing the permeability of the hardened 
material. The study of the concentrated suspensions viscosity allows to optimize the composition of the granular 
skeleton while assuring a good workability necessary to be placed easily. The influence of the particle size ratio 
and of the volume fraction of the fine class on the relative viscosity of a bimodal suspension has been recently 
investigated by Qi and Tanner [QI 11]. Their approach presents two inconveniences. The first one is that the 
curve representing the maximum volume fraction of the bidisperse system as a function of the volume fraction of 
the fine particles is too smooth when compared with numerical data (see for example [ROQ 16] for 0.2 and 0.4 
size ratios). The second one is that their study is limited to a bimodal case. The main objective of this study is to 
highlight a new relation between the relative viscosity ηr  of a multimodal concentrated suspension and both the 
volume fraction of the suspended particles in a total volume unity and the solid fraction of the dry mixture. We 
shall focus on an ideal suspension compound of spherical, inert and rigid particles in a Newtonian fluid. The 
predictions of the new model are compared with available experimental data from [STO 87] for three different 
size ratios of glass beads in silicone oil. 

2. The concept of Farris. 

Farris (1968) [FAR 68] proposed a theoretical treatment for the prediction of the viscosity of multimodal 
suspensions if each class size is completely independent of the others: d1 >> d2 ......>> dn . In this case, all 
smaller spheres added to the suspending fluid behave towards the larger ones as a viscous continuous phase. 
Farris extends the theory developed by Einstein (1906) [EIN 06] by considering that the relative viscosity 
depends only on the solid volume concentration in the liquid: 

 ηr = H φ( )  [ 1 ] 

Let us carry out our reasoning (Stovall, Buil, Such [STO 87]) on a suspension constituted by two spherical 
classes with diameters d1 >> d2  occupying volumes V1  and V2 . V0  represents the volume of the suspending 

fluid. The finest class is first introduced. Its relative viscosity ηr2  can be expressed as follows: 

 ηr2 = H ψ2 ,ψ2
MAX( )  where ψ2 =

V2
V0 +V2( )

 [ 2 ] 

In this precise case, ψ2
MAX  corresponds to the maximal volume fraction of the class 2 of the packing 

constituted by uniform-sized spherical particles. Let us now add the component with size d1 . As the condition of 
separation of scales is checked according to the Farris' assumption, the model of unimodal suspension can be 
used to predict the viscosity variation linked to the introduction of this new class. The final suspension has thus a 
relative viscosity corresponding to the product of the relative viscosities associated with each class. Assuming 
that the mathematical form of the law H  is always valid, the viscosity of the suspension becomes: 

 ηr1 = ηr2 H ψ1,ψ1
MAX( ) = H ψ1,ψ1

MAX( ) ×H ψ2 ,ψ2
MAX( )  where ψ1 =

V1
V0 +V1 +V2( )

 [ 3 ] 

ψ1
MAX  is the maximal volume fraction of the class 1 that can be added in the suspension before causing its 

jamming, taking account of the presence of the finest class 2: ψ1
MAX = function ψ2( ) . Let us generalize this 

reasoning for the n-components. 

 ηr = H ψi , ψi
MAX( )

i =1

n

∏  [ 4 ] 
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by pointing out that ψi
MAX  depends on the presence of the finest classes: ψi

MAX = function ψi+1, ....., ψn( ) . As the 

viscosity must diverge when ψi →ψi
MAX , it is better to write the relative viscosity as follows: 

 ηr = H
ψi

ψi
MAX

#

$
%%

&

'
((

i =1

n

∏  [ 5 ] 

3. Binary mixture without geometrical interactions: apollonian model. 

We consider d1 >> d2 . Let us call β  the dry solid fraction of each monosize class, supposed to be constant. 
We start by identifying the "dominant coarse particles" field and the "dominant fine particles" field where each 
class respectively constitutes the matrix of the dry mixture. 
In the first case, coarse particles fill the mold without being disturbed by the finest ones. Their volume fraction 
in a total volume unity is φ1 , their critical value being φ1

* . We have then to verify that: 

 φ1 ≤ φ1
* =β  [ 6 ] 

In the second case, fine particles fill the porosity of coarse particles. Concerning φ2  and φ2
* , we have to 

respect the following condition: 
 φ2 ≤ φ2

* =β 1− φ1( )  [ 7 ] 

We can then write that: 

 ψ1
MAX = φ1

* =β , ψ2
MAX =

φ2
*

1− φ1( )
=β  [ 8 ] 

As no geometrical interaction occurs, maximal volume fractions of classes 1 and 2 are equal to the solid 

fraction of each monosize class. Let us set Vj

Vk
k=0

n=2

∑
= φ y j  where y j≠0  is the volume fraction of the class j by 

reference of the total solid volume and φ  the volume fraction of the suspended particles in a total volume unity. 
By expressing ψ1  and ψ2  as functions of φ , y1  and y2 , the relative viscosity can be calculated as follows: 

 
ηr = H

ψ1
ψ1
MAX

#

$
%%

&

'
(( ×H

ψ2
ψ2
MAX

#

$
%%

&

'
((

 with ψ1 = φ y1 , ψ2 =
y2
1
φ
− y1

$

%
&

'

(
)

, ψ1
MAX =β , ψ2

MAX = β  
[ 9 ] 

4. Binary mixture with geometrical interactions. 

The objective now is to combine the concept of Farris and the Compressible Packing Model (CPM) from de 
Larrard [DEL 00] which takes into account the geometrical interactions. To this end, we are going to follow the 
scientific process used by Bournonville, Coussot, Chateau [BOU 05]. The approach adopted by Stovall, Buil, 
Such [STO 87] is indeed incomplete in the sense that volume fractions of each class don't change when seeking 
to quantify the maximal partial volume of each ones when causing the jamming. However, during this operation, 
a certain amount of fluid will be deleted, the solid phase remaining unchanged. The developed reasoning is thus 
inappropriate with the concept of Farris which proceeds by successive incorporations. The flow can then be 
jammed when a supplementary class is introduced if a sufficient number of particles is added. For the concept of 
Farris to be valid, volumes of granular classes already present in the suspension need to be maintained constant 
when a volume δVi  of a class i , supposed to be the dominant one, is progressively added. As long as the 
jamming does not occur, the solid phase can not be considered as a packing. According to the CPM from de 
Larrard, when the class 1 (coarse particles) is dominant, we have to verify that: 

 φ1 ≤ φ1
* =β − a12 φ2  [ 10 ] 

where a12  is the loosening effect coefficient (Figure 1). 
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In this case: 

 φ1 =
V1 + δV1( )

V0 +V1 +V2 + δV1( )
 and φ2 =

V2
V0 +V1 +V2 + δV1( )

 (dominant class 1) [ 11 ] 

When the class 2 (fine particles) is dominant, the relationship can be written: 

 φ2 ≤ φ2
* = β 1− φ1( ) − 1−β( ) b21 φ1  [ 12 ] 

where b21  is the wall effect coefficient (Figure 1). 

In this case: 

 φ1 =
V1

V0 +V1 +V2 + δV2( )
 and φ2 =

V2 + δV2( )
V0 +V1 +V2 + δV2( )

 (dominant class 2) [ 13 ] 

 

Figure 1. Illustrations of the loosening effect (left) and the wall effect (right). 

From the precedent relationships, we can deduce the maximal volume ΔVi  of the class i  that can be added to 
jam the suspension: 

 ΔV1 =
1
1−β( )

β Vj −V2 a12 −V1
j=0

n=2

∑
%

&
''

(

)
**

 if the class 1 is dominant [ 14 ] 

 ΔV2 =
1
1−β( )

β Vj −V1 β + 1−β( ) b21( ) −V2
j=0

n=2

∑
%

&
''

(

)
**

 if the class 2 is dominant [ 15 ] 

The value ΔV1  takes into account the loosening effect from fine particles of the class 2 on coarse particles of 
the class 1. The value ΔV2  takes into account the wall effect from coarse particles on finer ones. When the 
jamming occurs, we can deduce that: 

 φ1
* =

V1 + ΔV1( )
V0 +V1 +V2 + ΔV1( )

 and φ2 =
V2

V0 +V1 +V2 + ΔV1( )
 (dominant class 1) [ 16 ] 

 φ1 =
V1

V0 +V1 +V2 + ΔV2( )
 and φ2

* =
V2 + ΔV2( )

V0 +V1 +V2 + ΔV2( )
 (dominant class 2) [ 17 ] 

It is thus possible to give a mathematical definition to the partial volumes used in the calculation of the 
relative viscosity: 

 ψ1 =
V1

V0 +V1 +V2( )
, ψ2 =

V2
V0 +V2( )

, ψ1
MAX =

V1 + ΔV1( )
V0 +V1 +V2 + ΔV1( )

, ψ2
MAX =

V2 + ΔV2( )
V0 +V2 + ΔV2( )

 [ 18 ] 
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The expressions of ΔV1  and ΔV2  provided above lead to: 

 ψ1
MAX =

βV0 +V2 β − a12( )( )
V0 +V2 1− a12( )( )

, ψ2
MAX =

βV0 −V1 b21 1−β( )( )
V0 −V1 b21 1−β( )( )

 [ 19 ] 

By dividing each volume by Vk
k=0

n=2

∑ , by setting Vj

Vk
k=0

n=2

∑
= φ y j  and by taking into account that y j

j=1

n=2

∑ =1 , we can 

express ψ1 , ψ2 , ψ1
MAX  and ψ2

MAX  as functions of φ : 

 

 ψ1 = φ y1 , ψ2 =
y2
1
φ
− y1

$

%
&

'

(
)

, ψ1
MAX =

β
1
φ
−1

%

&
'

(

)
*+ y2 β − a12( )

%

&
'

(

)
*

1
φ
−1+ y2 1− a12( )

%

&
'

(

)
*

, ψ2
MAX =

β
1
φ
−1

%

&
'

(

)
* − y1 b21 1−β( )

%

&
'

(

)
*

1
φ
−1− y1 b21 1−β( )

%

&
'

(

)
*

 [ 20 ] 

According to the CPM, the solid fraction γ  of a dry binary mixture is calculated by using the expression of 
γ1  in the "coarse dominant" field and γ2  in the "fine dominant" field: 

 γ =min γ1 , γ2( ) , γ1 =
β

1− 1− a12( ) y2( )
, γ2 =

β

1− 1−β( ) 1− b21( ) y1( )
 

[ 21 ] 

By combining precedent relationships, it is possible to obtain ψ1 , ψ2 , ψ1
MAX  and ψ2

MAX  as functions of β , φ  
y1 , y2  and of solid fractions γ1  and γ2 : 

 

ηr = H
ψ1
ψ1
MAX

#

$
%%

&

'
(( ×H

ψ2
ψ2
MAX

#

$
%%

&

'
((

 

ψ1 = φ y1 , ψ2 =
y2
1
φ
− y1

$

%
&

'

(
)

, ψ1
MAX =

β
1
φ
−
1
γ1

&

'
(

)

*
++ y1 1−β( )

&

'
((

)

*
++

1
φ
−
β
γ1

&

'
(

)

*
+

, ψ2
MAX =

β
1
φ
−
1
γ2

&

'
(

)

*
++ y2 1−β( )

&

'
((

)

*
++

1
φ
−
β
γ2
− y1 1−β( )

&

'
(

)

*
+

 
[ 22 ] 

The advantage of these new expressions consists in highlighting a direct link between the relative viscosity 
ηr , even if the stiffening function is not completely defined, the volume fraction φ  of the suspended particles in 
a total volume unity, and the solid fraction of the dry binary mixture γ1  or γ2 . According to the approach 
adopted by Bournonville, Coussot, Chateau [BOU 05], it is now possible to create a suspension whose the solid 
phase is composed like a dry granular material with a solid fraction predicted by the CPM. When the latter is 
maximal by optimization of the granular skeleton, the critical solid fraction value is reached, the flow is jammed 
and the suspension becomes a packing. This "solid fraction - viscosity" association could also allow to improve 
the formulation of a liquefied concrete, for example, by following two steps: minimizing its porosity, i.e. the 
water volume in a volume unity, for a set viscosity but non-infinite. 

5. Ordinary mixture composed by n-classes. 

Let us now study an ordinary mixture composed by n-classes of particles. Let us suppose the ith class be the 
dominant one by taking into account the wall effect from coarsest particles and the loosening effect from finest 
ones. Its volume fraction in a total volume unity φi  must be lower than its critical value φi

* : 

 φi ≤ φi
* =β − β + bij 1−β( )( )

j=1

i−1

∑ φ j − aij φ j
j=i+1

n

∑  [ 23 ] 

where aij  indicates the loosening effect coefficient and bij  the wall effect coefficient. 
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φi  and φ j≠i  are calculated as follows when a volume δVi  of the class i  is added: 

 φi =
Vi + δVi( )
Vk

k=0

n

∑ + δVi
$

%
&&

'

(
))

 and 
φ j≠i =

Vj

Vk
k=0

n

∑ + δVi
%

&
''

(

)
**

 (dominant class i) 
[ 24 ] 

From this system of equations, we can now deduce the maximal volume ΔVi  of this class i  to be added to 
jam the suspension. 

 ΔVi =
1
1−β( )

β Vj − Vj
j=1

i−1

∑ β + 1−β( ) bij( ) − Vj
j=i+1

n

∑ aij −Vi
j=0

n

∑
%

&
''

(

)
**

 if the class i is dominant [ 25 ] 

The value ΔVi  takes into account both the wall effect and the loosening effect. When the jamming occurs, we 
can write: 

 φi
* =

Vi + ΔVi( )
Vk

k=0

n

∑ + ΔVi
$

%
&&

'

(
))

 and 
φ j≠i =

Vj

Vk
k=0

n

∑ + ΔVi
%

&
''

(

)
**

 (dominant class i) 
[ 26 ] 

It is now possible to define ψi  and ψi
MAX  of the class i in a mixture only constituted by finest classes, 

according to the concept of Farris: 

 ψi =
Vi

V0 + Vj
j=i

n

∑
#

$
%%

&

'
((

, 
ψi
MAX =

φi
*

1− φ j
j=1

i−1

∑
%

&
''

(

)
**

=
Vi + ΔVi( )

V0 + Vj + ΔVi
j=i

n

∑
%

&
''

(

)
**

 
[ 27 ] 

We can finally express ψi  and ψi
MAX  as follows: 

 ψi =
yi

1
φ
− y j

j=1

i−1

∑
%

&
''

(

)
**

, 
ψi
MAX =

β
1
φ
−1

%

&
'

(

)
* − 1−β( ) y j bij

j=1

i−1

∑ + y j β− aij( )
j=i+1

n

∑
%

&
''

(

)
**

1
φ
−1− 1−β( ) y j bij + y j 1− aij( )

j=i+1

n

∑
j=1

i−1

∑
%

&
''

(

)
**

 [ 28 ] 

According to the CPM, the solid fraction of a dry granular mixture composed by n-classes when the class i is 
dominant is: 

 
γ = γi =

β

1− 1−β( ) 1− bij( )y j − 1− aij( ) y j
j=i+1

n

∑
j=1

i−1

∑
%

&
''

(

)
**

 
[ 29 ] 

We can then determine the relative viscosity: 

 ηr = H
ψi

ψi
MAX

#

$
%%

&

'
((

i=1

n

∏ , 
ψi =

yi
1
φ
− y j

j=1

i−1

∑
%

&
''

(

)
**

, 
ψi
MAX =

β
1
φ
−
1
γi

&

'
(

)

*
++ yi 1−β( )

&

'
((

)

*
++

1
φ
−
β
γi
− 1−β( ) y j

j=1

i−1

∑
&

'
((

)

*
++

 [ 30 ] 

The expression of the relative viscosity diverges to infinity as φ  goes to γi  when the class i is dominant: the 
suspension becomes a packing. However, it is necessary to be conscious of the following paradox that may occur 
[BOU 05]: the concept of Farris assumes additions of successive classes by change of scale. The divergence can 
occur when the class i is introduced because this one reaches its critical volume fraction, the following classes 
having not yet been incorporated. However, the volume ΔVi  is calculated by taking into account geometrical 
interactions with all the granular classes, including those not present yet in the suspension when the divergence 
occurs. The expression allowing to determine the relative viscosity must then be used carefully. 

6. Experimental verifications on binary mixtures. 

Experimental data concerning binary mixtures are those presented by [STO 87]. They concern glass beads 
classified in rather narrow granular classes. The suspension liquid is a silicon oil with a viscosity equal to 
17.9 Pa.s  for a temperature of 20°C. It exhibits a Newtonian behaviour. Measurements are performed in coaxial 
cylinders. 
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The relative viscosity is calculated by a power-law relation (Krieger-Dougherty type [STO 87]): 

 ηr = 1− ψi
ψi
MAX

$

%
&&

'

(
))

− η*+ ,-1
β

i=1

n=2

∏  [ 31 ] 

where η"# $%1 = 2.5
 is the first-order intrinsic viscosity for spheres [EIN 06] and β  the solid fraction of each 

monosize class. The wall effect coefficient b21  and the loosening effect coefficient a12  are determined from the 
expressions of de Larrard [DEL 88] which are specifically adapted to spheres: 

 b21 x( ) =1− 1− x( )
1.6 , a12 x( ) =1− 1− x( )

3.1
− 3.1x 1− x( )

2.9  [ 32 ] 

where x  is the size ratio fine/coarse particles diameters. Each mixture being composed by spherical particles, 
the solid fraction of each monosize class is taken equal to β = 0.608 , corresponding to a random loose packing 
[ARI 09]. 
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Figure 2. Bimodal suspensions: comparison between relative predicted viscosities and relative experimental 
values from [STO 87] with 3 size ratios (x=0.2, x=0.4, x=0.7), for glass beads in silicone oil. 

Predictions of the viscosity model are, for the studied suspensions, in good agreement with experimental data 
by taking into consideration that the solid fraction of each monosize class β  is only estimated, and by 
considering high experimental uncertainties for the tested concentration ranges. For them, the exponent of the 
Krieger-Dougherty law equal to − 2.5β  seems to be appropriate. 

7. Upper and lower limits for ηr ,th  as a function of φ / φm  for a binary mixture. 

If now, the theoretical relative viscosity corresponding to the three size ratios x = 0.2 , x = 0.7 , x = 0.4  is 
represented for y2 = 0.30  as a function of the fraction φ / φm , called the normalized total solid volume fraction, 
the results show that the curves are very close together. However, this is not a single master curve (Figure 3). 

An upper limit of ηr ,th  can be found for the mixture with the highest solid fraction: the apollonian model. In 

this case: 

 x = 0 , b21 = 0 , a12 = 0 , γ1 =
β

1− y2( )
, γ2 =

β

1− 1−β( ) y1( )
 [ 33 ] 

The highest solid fraction is reached when γ1 = γ2  for which: 

 
y1 =

1
2 −β( )

, y2 =
1−β( )
2 −β( )

, φm =β 2 −β( ) , ψ1 =β
φ
φm

, ψ2 =
1−β( )

1
β

φm
φ

%

&
'

(

)
* −1

%

&
''

(

)
**

, ψ1
MAX =β , ψ2

MAX = β  
[ 34 ] 

829Volume 34 - Issue 1AJCE - Special Issue



34èmes Rencontres de l’AUGC, Université de Liège, Belgique, 25 au 27 mai 2016 8 
 

By using a power-law relation (Krieger-Dougherty type), we can deduce that: 

 ηr ,th
sup = 1− φ / φm( )

− η$% &'1
β
× 1−

1−β( )
1

φ / φm
−β

*

+
,

-

.
/

*

+

,
,
,
,
,

-

.

/
/
/
/
/

− η$% &'1
β

 [ 35 ] 
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Figure 3. Evolution of the theoretical relative viscosity as a function of the normalized total solid volume 

fraction φ / φm  for a volume fraction of the fine class y2=0.30 (β=0.608). 

A lower limit of ηr ,th  can also be found for the mixture with the lowest solid fraction when small particles are 

as fine as possible in infinitesimal quantity: 

 x = 0 , b21 = 0 , a12 = 0 , y1→1 , y2 → 0 , γ1→β , γ2 →1 , φm →β  [ 36 ] 

 ψ1→φ , ψ2 → 0 , ψ1
MAX =β , ψ2

MAX = β  [ 37 ] 

We can deduce that: 

 ηr ,th
inf = 1− φ / φm( )

− η$% &'1
β  [ 38 ] 

 

8. Conclusion. 

From a work of Bournonville, Coussot, Chateau, we have been able to develop a model of viscosity in a 
Newtonian fluid linking this latter to the volume fraction of the suspended particles in a total volume unity and 
to the solid fraction of the dry mixture. This theory takes into account both the hydrodynamic interactions, 
through the concept of Farris, and the geometrical interactions, through the CPM. However, to be compatible 
with these two approaches, the model initially proposed by Farris is modified to adopt the description of the wall 
effect and of the loosening effect used in the CPM. First results are positive because they give relatively good 
predictions about relative viscosities on suspensions of glass beads with three different size ratios. The model 
also allows to determine upper and lower limits for the theoretical relative viscosity as a function of φ / φm  which 
shows that a single master curve can not exist. Even if it requires improvements, this work could constitute an 
interesting comprehension tool to optimize granular skeletons for various kinds of materials where the densest 
mixture must be sought for a given viscosity. 
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